Production of Heavy Quarkonium States at the LHC with the ATLAS Experiment

> James Walder Lancaster University

On behalf of the ATLAS Collaboration

Heavy Quarkonium Physics

- + Heavy Quarkonium, the bound state of *b* or *c* quark anti-quark pair, continues to challenge our understanding of QCD near to strong decay threshold
 - + J/ψ observed in 1974,
 - Despite being a "known" resonance its production mechanisms still uncertain.
- Onia production occurs through:
 - Prompt production -
 - + Direct production,
 - Feed-down from higher quarkonium states.
 - Non-prompt production -
 - From decays of B hadrons (only charmonium).
- LHC era extends reach of the hadro-production of quarkonium to new energy regime.
- + ATLAS presents results on J/ψ and Υ production cross-sections, and observation of the $\chi_{c/b}$ system.

The ATLAS Detector

- •Muon Momentum resolution
- $\sigma/p < 10\%$ up to ~ 1 TeV

End-cap semiconductor tracker

End-cap transition radiation tracker

J/ψ : Measurement of the differential Inclusive, Prompt and LANCASTER **Non-Prompt Cross-Section** Nucl. Phys. B 850 (2011) 387-444 J/ψ candidates identified through S S ATLAS Data: 2010 50 √s = 7 TeV L dt = 2.2 pb⁻¹ di-muon decays: 8 0.0 √s = 7 TeV L dt = 2.2 pb 0.08 Bkg. component Bkg. component Experimentally clean; BR $\sim 6\%$ III Me = 46 MeV 0.00<y<5 2.00<|y|<2.40 30

+ Extract differential inclusive cross-section:

+
$$\frac{d^2\sigma(J/\psi)}{dp_T dy} \cdot Br(J/\psi \to \mu^+\mu^-) = \frac{N_{corr}^{J/\psi}}{\mathcal{L} \cdot \Delta p_T \Delta y}$$

J/ψ : Spin-Alignment

- + Acceptance: probability that J/ψ survives muon cuts
 - However, acceptance depends on spin-alignment,
 - * Not yet well-measured under LHC conditions. $\frac{dN}{d\Omega} = 1 + \lambda_{\theta^{\star}} \cos^2 \theta^{\star} + \lambda_{\phi^{\star}} \sin^2 \theta^{\star} \cos 2\phi^{\star} + \lambda_{\theta^{\star}\phi^{\star}} \sin 2\theta^{\star} \cos \phi^{\star}$
- + Isotropic distribution taken as central assumption
 - + $\lambda_{\theta^{\star}} = \lambda_{\phi^{\star}} = \lambda_{\theta^{\star}\phi^{\star}} = 0$ (non-physical / pythia default)
- Take five specific working-point scenarios
 - Use as envelope of additional uncertainty on central value.
- Relative uncertainty between different scenarios reduces at higher-pT.

J/ψ : Inclusive Cross-section

Good agreement between experiments. (including updated CMS results (not shown)- <u>JHEP 02 (2012) 011</u>)

LANCASTER UNIVERSITY

J/ψ : Non-prompt Fraction

Discriminate between prompt and non-prompt components from 2-d mass-lifetime fit.

No strong dependence with centre-of-mass energy, or pp vs pp.

Ŷ

J/ψ : Non-prompt Cross-section

Non-prompt cross-section agrees well with FONLL predictions

LANCASTER UNIVERSITY

J/ψ : Prompt Cross-section

+ CEM shape not quite in agreement.

Upsilon: Fiducial Cross-section

- Similar procedure as for J/ψ for weight correction
 - Candidate selection: 4 GeV p_T on both muons within |η| < 2.5
- + Likelihood fit to $\Upsilon(1,2,3S)$ and background templates

LANCASTER

Υ : Fiducial Cross-section Results

- Results are not corrected for acceptance step:
 - + defined within muon kinematics ($p_T > 4$ GeV, $|\eta| < 2.5$) –
 - removes spin-alignment uncertainty!

- Colour Singlet Model prediction is low, but contains no feed down from higher order states (NLO only)
- + NRQCD shows closer agreement (within $\sim 2x$), although shape is not matched.

Spectroscopy: χ states

- Contribution to S-wave charm(bottom)-onium states through feed-down of the P-wave χ_c and χ_b states considerable (~ 1/3)
 - Measurement of these feed-down processes key in overall understanding of quarkonium production
- Experimentally, observe χ_c through its radiative decays to J/ψ .
 - Challenge of reconstructing soft-photon through calorimetry or tracking (via conversions to electron pairs).
- Construct the Mass difference:
 - $\Delta m = m(\mu\mu\gamma) m(\mu\mu)$
 - Effectively removes contribution of the di-muon resolution.
- *χ_c* observation using photons identified in electromagnetic calorimeter.
 - Background shape determined from di-muon sideband region.
 - + χ_{c0} contribution neglected small branching fraction through radiative decays.

LANCASTEF

Observation of χ_b system

- + Observation of χ_b system similar to χ_c :
 - Observed through radiative decays to upsilons.
- Upsilons identified through di-muon decay.
- Data from 2011 at 7 TeV, corresponds to 4.4 fb⁻¹.
 - Events required to pass a suite of single or di-muon triggers.
- Photons identified through both:
 - Calorimetric measurement:
 - High efficiency
 - Threshold reconstruction energy 2.5 GeV.
 - Tracking-based through conversions ($\gamma \rightarrow e^+e^-$ in silicon layer of the inner detector)
 - Small probability(conversion) x reco. eff.
 - Lower threshold $p_T > 1$ GeV.
- Photons not compatible with originating from di-muon vertex rejected.

LANCASTER

6

3

9

 $p_{\tau}(\gamma \rightarrow e^+e^-)$ [GeV]

Observation of $\chi_b(3P)$

- Di-muon candidates selected around $\Upsilon(1S)$ and $\Upsilon(2S)$:
 - + Photon p_T too soft in $\Upsilon(2S)$ transitions to be observed through unconverted photons.
 - + Also true for the expected transitions to $\Upsilon(3S)$ (calorimetry and conversions).

- Plot $\Delta m + M(\mu\mu)$ distribution:
 - $\chi_b(1P)$ and $\chi_b(2P)$ observed.
 - First observation of new χ_b state.
 - Interpreted as $\chi_b(3P)$.
- Mass barycentre is estimated to be (using conversions):
 - * $M(3P) = 10.530 \pm 0.005 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \text{ GeV}$
- Hyperfine structure to be resolved.

James Walder

LANCASTER

Conclusions

- + Heavy Quarkonium continues to challenge current understanding:
 - Data and theory gap reducing.
- ATLAS has measured:
 - + J/ψ inclusive, prompt and non-prompt differential cross-sections.
 - + $\Upsilon(1S)$ fiducial differential cross-section.
- + χ_c observed through radiative decays to J/ψ .
- $\chi_b(1P)$ and $\chi_b(2P)$ observed through radiative decays to $\Upsilon(1S)$.
- First observation of $\chi_b(3P)$ state decaying to $\Upsilon(1S)$ and $\Upsilon(2S)$:
 - + Each of the $\Upsilon(1,2,3S)$ states now subject to feed-down contributions.
- + Prompt production of $\psi(2S)$, only state not contaminated by feed-down.
- Synergy across LHC experiments exploring low-pT and extending into highest pT ranges across rapidities.
- Spin-alignment measurement will reduce a dominant source of uncertainty.
- These results, and forthcoming ATLAS measurements of:
 - * $\Upsilon(1,2,3S)$, and $\psi(2S)(\rightarrow \mu\mu \text{ and } \rightarrow \mu\mu\pi\pi)$ production cross-sections,
 - + $\psi(2S)$ to J/ ψ production ratios, di-onia production and cross-sections of χ_b/c systems,
- will provide important input on the underlying mechanisms of Heavy Quarkonium near the strong decay threshold.

Backup

J/ψ : Sources of Uncertainties

 Sources of systematic uncertainty, and total uncertainties in each analysis bin (excluding spin-alignment)

χ_b Event Selection

- pT(µ)>4 GeV
- + |η| < 2.3
- Muons identified using muon spectrometer
 - Track parameters from inner detector
- Oppositely-charged di-muon pairs forming a good vertex compatible with Upsilon mass.
- pT(µµ)>12 GeV (conversion)
- pT(µµ)>20 GeV (calorimetry)
- + |y|<2.0
- Photons identified through calorimetry:
 - ET(γ) > 2.5 GeV
 - + |η(γ)|<2.37
 - Correction applied to photon to point back to µµ-vertex
- Photons identified through conversions:
 - pT(γ) > 1 GeV, pT(e)>0.5 GeV
 - + |η(γ)|<2.5
 - Radius of Conversion > 40 mm, P(conv) > 0.01
 - Unsigned Impact Parameter (3D) cut < 2mm to reject photons not compatible with Upsilon vertex.

LANCASTE

χ_b(3P) Calorimetry Candidate

χ_b(3P) Conversion Candidate

Bottomonium Spectroscopy through radiative decays in ATLAS

Observed bottomonium radiative decays in ATLAS, L = 4.4 fb

Selections

The 3D impact parameter of the converted photon with respect to the di-muon vertex, a_0 , is a powerful variable which can be used to select photons associated with the di-muon vertex:

- a₀ < 2 mm is required to reject photon combinatorics not compatible with having originated from the di-muon vertex
- The χ^2 probability of the conversion vertex fit is required to be greater than 0.01

A. Chisholm

Systematics: Unconverted

An extended unbinned maximum likelihood fit is performed to the $m(\mu^+\mu^-\gamma) - m(\mu^+\mu^-) + m_{\Upsilon(1S)}^{PDG}$ distribution to extract an estimate of the $\chi_b(3P)$ mass barycentre:

Fit Model

- **Signal:** Single Gaussian for each $\chi_b(nP)$ peak, each with a free mean value and width
- **Background:** Described by exp $(A \cdot (\Delta M) + B \cdot (\Delta M)^{-2})$ where A and B are free parameters

Assigned Systematic Uncertainties

- Unconverted photon energy scale uncertainty (estimated at ±2% of the ΔM position)
- Modelling of the background distribution (estimated from refitting with various alternative models)

	Fitted Mass (MeV)
$\chi_b(1P)$	9910 \pm 6 (stat.) \pm 11 (syst.)
$\chi_b(2P)$	10246 ± 5 (stat.) \pm 18 (syst.)
$\chi_b(3P)$	$10541\pm11~(ext{stat.})\pm30~(ext{syst.})$

The statistical significance of third signal remains greater than 6σ with each systematic variation

Systematics: Converted

Fit Model:

- As the J = 0 branching fraction is significantly smaller than for J = 1, 2 its contribution can be neglected
- The \(\chi_b(nP)\) state is therefore modelled by two Crystal Ball (CB) functions to describe the low-mass Bremsstrahlung tail
- For n = 1, 2, the masses of the individual J=1,2 states are fixed to the known PDG values, and for n=3 the hyperfine splitting is fixed to the theoretically predicted value of 12 MeV
- The relative normalisations of the J=1 and J=2 components are fixed to be equal
- A free parameter λ , common to all the peaks, accounts for additional energy losses and appears in the form $\overline{\Delta m} \cdot \lambda$
- The background is modelled by $(\Delta m q_0)^{\alpha} \cdot \exp\{(\Delta m q_0) \cdot \beta\}$

Assigned Systematic Uncertainties:

- ▶ Vary relative J = 1, 2 signal normalisation by ± 0.25 (or left free in fit): ± 5 MeV
- Alternative signal and background models: ± 5 MeV
- ▶ Decoupled fits to the $\Upsilon(1S)$ and $\Upsilon(2S)$ distributions: ±5 MeV
- Individually releasing constraints to the PDG values for the \(\chi_b(1P)\) and \(\chi_b(2P)\) masses: \(\pm 3 \) MeV

LANCASTE