Production of Heavy Quarkonium States at the LHC with the ATLAS Experiment

James Walder
Lancaster University

On behalf of the ATLAS Collaboration
Heavy Quarkonium Physics

• Heavy Quarkonium, the bound state of b or c quark anti-quark pair, continues to challenge our understanding of QCD near to strong decay threshold
 • J/ψ observed in 1974,
 • Despite being a “known” resonance its production mechanisms still uncertain.

• Onia production occurs through:
 • Prompt production -
 • Direct production,
 • Feed-down from higher quarkonium states.
 • Non-prompt production -
 • From decays of B hadrons (only charmonium).

• LHC era extends reach of the hadro-production of quarkonium to new energy regime.

• ATLAS presents results on J/ψ and Υ production cross-sections, and observation of the $X_{c/b}$ system.
The ATLAS Detector

- Data selection begins with optimised suite of single and di-muon triggers:
 - 3-level system: 40 MHz to $O(200)$ Hz
 - Muon ID from Muon Spectrometer
 - Inner Detector provides precision momentum and lifetime measurements

- **Inner Detector**
 - $|\eta|<2.5$
 - Solenoid B=2T
 - Si Pixels,
 - Si strips,
 - Transition Radiation Tracker (TRT)
 - $\sigma/p_T \sim 3.4 \times 10^{-4} p_T + 0.015$ for $(|\eta|<1.5)$
 - Used for Tracking and Vertexing:

- **Muon Spectrometer**
 - $|\eta|<2.7$
 - Toroid B-Field, average ~ 0.5T
 - Muon Momentum resolution $\sigma/p < 10\%$ up to ~ 1 TeV
J/ψ : Measurement of the differential Inclusive, Prompt and Non-Prompt Cross-Section

- J/ψ candidates identified through di-muon decays:
 - Experimentally clean; BR ~ 6%
 - Separate events in to bins of pT-rapidity for differential analysis

- Per-candidate weights applied to correct for detector inefficiencies from:
 - Muon reconstruction and trigger efficiencies,
 - Detector acceptance.

\[
w^{-1} = \mathcal{A} \cdot \mathcal{M} \cdot \mathcal{E}^2_{\text{trk}} \cdot \mathcal{E}^+_{\mu}(p_T^+, \eta^+) \cdot \mathcal{E}^-_{\mu}(p_T^-, \eta^-) \cdot \mathcal{E}_{\text{trig}}
\]

- Binned χ^2 fit to weighted mass-distributions determines corrected yields in each bin.
- Extract differential inclusive cross-section:
 \[
 \frac{d^2\sigma(J/\psi)}{dp_Tdy} \cdot \text{Br}(J/\psi \rightarrow \mu^+\mu^-) = \frac{N_{J/\psi}^{\text{corr}}}{L \cdot \Delta p_T \Delta y}
 \]
J/ψ: Spin-Alignment

- Acceptance: probability that \(J/ψ \) survives muon cuts
 - However, acceptance depends on spin-alignment,
 - Not yet well-measured under LHC conditions.

\[
\frac{dN}{d\Omega} = 1 + \lambda_{\theta^*} \cos^2 \theta^* + \lambda_{\phi^*} \sin^2 \theta^* \cos 2\phi^* + \lambda_{\theta^* \phi^*} \sin 2\theta^* \cos \phi^*
\]

- Isotropic distribution taken as central assumption
 - \(\lambda_{\theta^*} = \lambda_{\phi^*} = \lambda_{\theta^* \phi^*} = 0 \) (non-physical / pythia default)

- Take five specific working-point scenarios
 - Use as envelope of additional uncertainty on central value.
 - Relative uncertainty between different scenarios reduces at higher-pT.
Good agreement between experiments.
(including updated CMS results (not shown) - JHEP 02 (2012) 011)
J/ψ: Non-prompt Fraction

- Discriminate between prompt and non-prompt components from 2-d mass-lifetime fit.

- Synergy between CDF and CMS measurements:
 - No strong dependence with centre-of-mass energy, or pp vs pp.

- (also compatible with updated CMS results - not shown - JHEP 02 (2012) 011)
* Non-prompt cross-section agrees well with FONLL predictions
J/ψ: Prompt Cross-section

- Contributions from NNLO* compare better than NLO.
- CEM shape not quite in agreement.
Upsilon: Fiducial Cross-section

- Measurement of differential production cross-section of $\Upsilon(1S)$ in p_T & rapidity.

- Similar procedure as for J/ψ for weight correction
 - Candidate selection: 4 GeV p_T on both muons within $|\eta|<2.5$

- Likelihood fit to $\Upsilon(1,2,3S)$ and background templates

Backgrounds more significant than in J/ψ, larger and more complex!

Use OS/SS $\mu+\text{trk}$ data and HF MC to model
Results are not corrected for acceptance step:
- defined within muon kinematics ($p_T > 4$ GeV, $|\eta| < 2.5$) –
- removes spin-alignment uncertainty!

Colour Singlet Model prediction is low, but contains no feed down from higher order states (NLO only)
- NRQCD shows closer agreement (within ~2x), although shape is not matched.
Spectroscopy: χ states

- Contribution to S-wave charm(bottom)-onium states through feed-down of the P-wave χ_c and χ_b states considerable ($\sim 1/3$)
- Measurement of these feed-down processes key in overall understanding of quarkonium production

- Experimentally, observe χ_c through its radiative decays to J/ψ.
- Challenge of reconstructing soft-photon through calorimetry or tracking (via conversions to electron pairs).
- Construct the Mass difference:
 - $\Delta m = m(\mu\mu\gamma) - m(\mu\mu)$
 - Effectively removes contribution of the di-muon resolution.

- χ_c observation using photons identified in electromagnetic calorimeter.
- Background shape determined from di-muon sideband region.
- χ_{c0} contribution neglected - small branching fraction through radiative decays.
Observation of Xb system

- Observation of Xb system similar to Xc:
 - Observed through radiative decays to upsilons.
 - Upsilons identified through di-muon decay.

- Data from 2011 at 7 TeV, corresponds to 4.4 fb$^{-1}$.
 - Events required to pass a suite of single or di-muon triggers.

- Photons identified through both:
 - Calorimetric measurement:
 - High efficiency
 - Threshold reconstruction energy 2.5 GeV.
 - Tracking-based through conversions ($\gamma \rightarrow e^+e^-$ in silicon layer of the inner detector)
 - Small probability (conversion) x reco. eff.
 - Lower threshold $p_T > 1$ GeV.
 - Photons not compatible with originating from di-muon vertex rejected.
Observation of $\chi_b(3P)$

- Di-muon candidates selected around $\Upsilon(1S)$ and $\Upsilon(2S)$:
 - Photon p_T too soft in $\Upsilon(2S)$ transitions to be observed through unconverted photons.
 - Also true for the expected transitions to $\Upsilon(3S)$ (calorimetry and conversions).

- Plot $\Delta m + M(\mu\mu)$ distribution:
 - $\chi_b(1P)$ and $\chi_b(2P)$ observed.
 - **First observation of new χ_b state.**
 - Interpreted as $\chi_b(3P)$.

- Mass barycentre is estimated to be (using conversions):
 - $M(3P) = 10.530 \pm 0.005$ (stat.) ± 0.009 (syst.) GeV
 - Hyperfine structure to be resolved.

Plot $\Delta m + M(\mu\mu)$

- Data $\int L dt = 4.4$ fb$^{-1}$
 - Data: $\Upsilon(1S)\gamma$
 - Fit to $\Upsilon(1S)\gamma$
 - Background to $\Upsilon(1S)\gamma$

- Data: $\Upsilon(2S)\gamma$
 - Fit to $\Upsilon(2S)\gamma$
 - Background to $\Upsilon(2S)\gamma$

Converted Photons

- $\chi_b \rightarrow \Upsilon(1S)\gamma$
- $\chi_b \rightarrow \Upsilon(2S)\gamma$
Conclusions

✦ Heavy Quarkonium continues to challenge current understanding:
 ✦ Data and theory gap reducing.
 ✦ ATLAS has measured:
 ✦ J/ψ inclusive, prompt and non-prompt differential cross-sections.
 ✦ $\Upsilon(1S)$ fiducial differential cross-section.
 ✦ χ_c observed through radiative decays to J/ψ.
 ✦ $\chi_b(1P)$ and $\chi_b(2P)$ observed through radiative decays to $\Upsilon(1S)$.
 ✦ First observation of $\chi_b(3P)$ state decaying to $\Upsilon(1S)$ and $\Upsilon(2S)$:
 ✦ Each of the $\Upsilon(1, 2, 3S)$ states now subject to feed-down contributions.
 ✦ Prompt production of $\psi(2S)$, only state not contaminated by feed-down.
 ✦ Synergy across LHC experiments exploring low-pT and extending into highest pT ranges across rapidities.
 ✦ Spin-alignment measurement will reduce a dominant source of uncertainty.
 ✦ These results, and forthcoming ATLAS measurements of:
 ✦ $\Upsilon(1, 2, 3S)$, and $\psi(2S)(\rightarrow \mu\mu$ and $\rightarrow \mu\mu\pi\pi)$ production cross-sections,
 ✦ $\psi(2S)$ to J/ψ production ratios, di-onia production and cross-sections of χ_b/c systems,
 ✦ will provide important input on the underlying mechanisms of Heavy Quarkonium near the strong decay threshold.
Backup
J/ψ: Sources of Uncertainties

- Sources of systematic uncertainty, and total uncertainties in each analysis bin (excluding spin-alignment)
χ_b Event Selection

- $p_T(\mu)>4$ GeV
- $|\eta| < 2.3$
- Muons identified using muon spectrometer
 - Track parameters from inner detector
- Oppositely-charged di-muon pairs forming a good vertex compatible with Upsilon mass.
- $p_T(\mu\mu)>12$ GeV (conversion)
- $p_T(\mu\mu)>20$ GeV (calorimetry)
- $|y|<2.0$
- **Photons identified through calorimetry:**
 - $E_T(\gamma) > 2.5$ GeV
 - $|\eta(\gamma)|<2.37$
 - Correction applied to photon to point back to $\mu\mu$-vertex
- **Photons identified through conversions:**
 - $p_T(\gamma) > 1$ GeV, $p_T(e)>0.5$ GeV
 - $|\eta(\gamma)|<2.5$
 - Radius of Conversion > 40 mm, $P(\text{conv}) > 0.01$
 - Unsigned Impact Parameter (3D) cut < 2 mm to reject photons not compatible with Upsilon vertex.
$\chi_b(3P)$ Calorimetry Candidate
$\chi_b(3P)$ Conversion Candidate
Bottomonium Spectroscopy through radiative decays in ATLAS
The 3D impact parameter of the converted photon with respect to the di-muon vertex, a_0, is a powerful variable which can be used to select photons associated with the di-muon vertex:

χ^2 probability of the conversion vertex fit is required to be greater than 0.01

χ^2 probability of the conversion vertex fit is required to be greater than 0.01
Systematics: Unconverted

An extended unbinned maximum likelihood fit is performed to the
\[m(\mu^+\mu^-\gamma) - m(\mu^+\mu^-) + m_{T(1S)}^{PDG} \]
distribution to extract an estimate of the \(\chi_b(3P) \) mass barycentre:

Fit Model

- **Signal:** Single Gaussian for each \(\chi_b(nP) \) peak, each with a free mean value and width
- **Background:** Described by \(\exp(A \cdot (\Delta M) + B \cdot (\Delta M)^{-2}) \) where \(A \) and \(B \) are free parameters

Assigned Systematic Uncertainties

- **Unconverted** photon energy scale uncertainty (estimated at ±2% of the \(\Delta M \) position)
- Modelling of the background distribution (estimated from refitting with various alternative models)

<table>
<thead>
<tr>
<th>(\chi_b(nP))</th>
<th>Fitted Mass (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi_b(1P))</td>
<td>9910 ± 6 (stat.) ± 11 (syst.)</td>
</tr>
<tr>
<td>(\chi_b(2P))</td>
<td>10246 ± 5 (stat.) ± 18 (syst.)</td>
</tr>
<tr>
<td>(\chi_b(3P))</td>
<td>10541 ± 11 (stat.) ± 30 (syst.)</td>
</tr>
</tbody>
</table>

The statistical significance of third signal remains greater than 6\(\sigma \) with each systematic variation

A. Chisholm
Systematics: Converted

Fit Model:

- As the $J = 0$ branching fraction is significantly smaller than for $J = 1, 2$ its contribution can be neglected
- The $\chi_b(nP)$ state is therefore modelled by two Crystal Ball (CB) functions to describe the low-mass Bremsstrahlung tail
- For $n = 1, 2$, the masses of the individual $J=1,2$ states are fixed to the known PDG values, and for $n=3$ the hyperfine splitting is fixed to the theoretically predicted value of 12 MeV
- The relative normalisations of the $J=1$ and $J=2$ components are fixed to be equal
- A free parameter λ, common to all the peaks, accounts for additional energy losses and appears in the form $\Delta m \cdot \lambda$
- The background is modelled by $(\Delta m - q_0)^{\alpha} \cdot \exp\{(\Delta m - q_0) \cdot \beta\}$

Assigned Systematic Uncertainties:

- Vary relative $J = 1, 2$ signal normalisation by ± 0.25 (or left free in fit): ± 5 MeV
- Alternative signal and background models: ± 5 MeV
- Decoupled fits to the $\Upsilon(1S)$ and $\Upsilon(2S)$ distributions: ± 5 MeV
- Individually releasing constraints to the PDG values for the $\chi_b(1P)$ and $\chi_b(2P)$ masses: ± 3 MeV

A. Chisholm