ATLAS $t\bar{t}$ resonance searches

Marcel Vos (IFIC, CSIC/UV, Valencia, Spain)

on behalf of the ATLAS collaboration

ICHEP, Melbourne, July 2012
motivation
The top quark is special in many extensions of the Standard Model

The LHC produces high-mass $t\bar{t}$ pairs at an unprecedented rate

Search for signatures of new physics in the $t\bar{t}$ mass spectrum
- narrow ($\Gamma/m\sim1.2\%$) resonance; leptophobic Z'
- broad ($\Gamma/m\sim15\%$), colored resonance; KK gluon

Results on 7 TeV pp data from:
di–lepton ($\ell = e,\mu \rightarrow \text{BR} \sim 5\%$)
 1.04/fb ATLAS-CONF-2011-123
lepton+jets ($\ell = e,\mu \rightarrow \text{BR} \sim 30\%$)
- classical/resolved
 200/pb, ATLAS-CONF-2011-087
- boosted
 2.04/fb preliminary results

Dilepton (ee, $e\mu$, $\mu\mu$)
Lepton (e/μ) + jets
Dilepton final state

Selection:
- 2 isolated leptons, opposite charge
- ≥ 2 jets with $p_T > 25$ GeV
- $|m_Z - m_{ll}| < 10$ GeV
- $E_T^{\text{miss}} > 40$ GeV
- $m_{ll} > 10$ GeV

Acceptance \times efficiency \times BR:
$\sim 1.3 - 1.5\%$ for benchmark signals

Backgrounds:
Drell-Yan MC normalized in a data control sample orthogonal to the signal sample

Reconstruction:
Two undetected neutrinos. Use effective mass: $H_T + E_T^{\text{miss}}$, where $H_T = \Sigma p_T$
dilepton final state

No significant deviations from the Standard Model

95% C.L. upper limits on $\sigma \times \text{BR}$ as a function of mass (Bayesian approach):

$m (g_{KK}) > 1080 \text{ GeV}$

32 systematic uncertainties

→ each has a small impact ($< 15\%$) on $\sigma \times \text{BR}$ limits
→ sensitivity degraded by a factor 1.5 – 3 wrt stat. only

Sensitivity limited by branching fraction and mass resolution

→ less of a disadvantage for broad resonances

ICHEP, July 2012
lepton+jets (classical)

Selection:
isolated e/μ
≥ 4 jets
 (3 if $m_j > 60$ GeV)
≥ 1 b-tagged jet

BG composition:
80% tt pairs

Signal acc x eff x BR:
~ 7%
(m~0.7 – 1.3 TeV)

Backgrounds:
Multijets from data with low-quality leptons
W+jets normalized using charge asymmetry
lepton+jets (classical)

Reconstruction:
4 (3) highest p_T jets
+ lepton
+ neutrino
ISR mitigation scheme

Good mass resolution (10-15%)

Semi-boosted analysis: special high-mass region has \sim1% of background events, but can have a large signal contribution
lepton+jets (classical)

No sign of new physics → 95% C.L.
limits on $\sigma \times \text{BR}$ using the same tools as di-lepton search

Interpretation in terms of a narrow leptophobic Z' in topcolor models and the KK gluon. Limits on the $\sigma \times \text{BR}$ of broad resonances are slightly weaker.

95% C.L. excluded rate:
$\sigma \times \text{BR} < 9.3$ pb at $m = 500$ GeV
$\sigma \times \text{BR} < 0.95$ pb at $m = 1300$ GeV

95% C.L. excluded mass ranges:
500 GeV $< m(Z') < 880$ GeV
500 GeV $< m(g_{KK}) < 1130$ GeV
top quarks in a new kinematic regime

A graphical account of the argument for a dedicated reconstruction algorithm for boosted top quarks, using landmark ATLAS events.

Reconstruct as a “fat” jet with R=1
Tag using jet substructure

Observed:

- $m_j = 197$ GeV
- $\sqrt{d_{12}} = 110$ GeV
- $\sqrt{d_{23}} = 40$ GeV

Naive expectation:

- $m_t > m_t$
- $\sqrt{d_{12}} \approx m_W$

Early “l+jets” candidate
ATLAS-CONF-2010-063
ICHEP, july 2012

First boosted top quark candidate
ATLAS-CONF-2011-073

$\mathbf{m_{tt} > 1 \, \text{TeV}}$
ATLAS-CONF-2011-083
lepton+jets (boosted)

Lepton selection identical to previous analysis (future: ATL-PHYS-PUB-2010-008)

Semi-leptonic top candidate = lepton + neutrino + jet closest to lepton

Hadronic top candidate = “fat” jet (anti-k_t, $R=1$)

- $p_T > 250$ GeV
- $m_j > 100$ GeV
- $\sqrt{d_{12}} > 40$ GeV

See also: Bertrand Chapleau's contribution to this conference and JHEP 1205 (2012) 128
lepton+jets (boosted)

Shape of kinematic distributions corroborates background composition from data/MC.

Jet mass distribution for anti-k_t $R=1$ jets selected as hadronic top candidates with $p_T > 350$ GeV.

Mass response for “fat” jets reasonably well described.

Transverse mass of the $l\nu$ system

Mass of the $bl\nu$ system
lepton+jets (boosted)

\[\text{t\bar{t} mass spectrum combining electron+jets and muon+jets channels compared to a SM template from data and MC} \]

Very good agreement with SM: Largest excess (BumpHunter) \(\sim 1.4 \, \sigma \)
lepton+jets (boosted)

95% C.L. excluded mass ranges:
- Leptophobic Z': $m < 1.2$ TeV
- KK gluon: $m < 1.5$ TeV

30 sources of systematic uncertainty on yield and shape of background and signal
- Jet energy and mass scale (5-7%) has the largest impact on the sensitivity
- Impact of pile-up on jet mass is fairly well modeled
Comparison of sensitivity

Expected g_{KK} limit @ 600 GeV
ATLAS Dilepton: 11.3 pb
ATLAS Classical: 6.0 pb
ATLAS Boosted: -

Expected g_{KK} limit @ 1.6 TeV
ATLAS Dilepton: 2.8 pb
ATLAS Classical: 0.68 pb
ATLAS Boosted: 0.40 pb
Summary

ATLAS $t\bar{t}$ resonance searches on dilepton and lepton + jets final states with 2.05/fb provide sensitivity from production threshold and well into the TeV regime.

No significant deviations from the Standard Model \rightarrow competitive limits on new massive states.

Classical and boosted algorithms have complementary sensitivity: the boosted analysis clearly enhances the ATLAS sensitivity for $m > 1$ TeV.