Measurement of WW+WZ production in lvjj Final States

Gregorio Bernardi
(LPNE-Paris, CRNS/IN2P3)

On behalf of the

Do collaboration

Thanks to all my Dzero colleagues, in particular to J. Sekaric
Motivation

Probe of the EWK Symmetry Breaking mechanism
SM tests
Indirect searches for New Physics (NP)
(cross sections, kinematic distributions, gauge boson couplings)

Important background to Top, Higgs, SUSY
Good understanding is highly valuable

Proving ground for analysis techniques (MVA)
and statistical treatment used in the Tevatron
Higgs searches

Same final states, similar challenges
For SM tests, and $H \rightarrow WW$

Fully leptonic final states

$l = e/\mu$

- most analyzed
- small branching ratio
- clean signal (low backgrounds)
- observed at the Tevatron

Dibosons

Observation of Bosons at Hadron Colliders

- W
- Z
- $W\gamma$
- $Z\gamma$

1983 CERN

1995 Fermilab

WW 2005 Fermilab

WZ 2007 Fermilab

ZZ 2008 Fermilab

WH/ZH

(a) D0 8.6 fb$^{-1}$

(b) D0 8.6 fb$^{-1}$

(c) D0 8.6 fb$^{-1}$
To understand VH Production:

lepton+jets final states

\(l = e/\mu \) + jets

- 5-10 \times \) leptonic BR
- large background from jets
- significant systematic effects
- dijet mass resolution:
 \(|M_Z - M_W| < \text{D0 detector resolution} \)
- WW+WZ

Evidence by DØ (4.4\(\sigma \)) 2009
Observation by CDF in 2010

Cross Sections

<table>
<thead>
<tr>
<th>WW</th>
<th>WW+WZ</th>
<th>WW part</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l\nu l\nu) [pb]</td>
<td>(l\nu jj) [pb]</td>
<td>(l\nu jj) [pb]</td>
</tr>
<tr>
<td>4.3/fb</td>
<td>12.1 ± 1.8</td>
<td>18.1 ± 4.1</td>
</tr>
<tr>
<td>1.1/fb</td>
<td>11.5 ± 2.2</td>
<td>20.2 ± 4.6</td>
</tr>
</tbody>
</table>

\(\text{SM@NLO} \sigma(\text{WW}) = 11.7 ± 0.8 \text{ pb} \)
\(\text{SM@NLO} \sigma(\text{WZ}) = 3.5 ± 0.3 \text{ pb} \)
Benchmarks

- **WW+WZ→lνjj as a benchmark**
 First evidence of the dijet mass resonance from WW+WZ

\[\sigma(WW + WZ) = 20.2 \pm 4.6 \text{ pb} \]

SM@NLO: \(\sigma(WW + WZ) = 16.1 \pm 0.9 \text{ pb} \)

SM@NLO: (l = e+μ)
\[\sigma_{WW} \times \text{BR}(W \rightarrow l\nu; W \rightarrow jj) \approx 3.5 \text{ pb} \]
\[\sigma_{WZ} \times \text{BR}(W \rightarrow l\nu; Z \rightarrow jj) \approx 0.6 \text{ pb} \]

- **WZ→lνjj as a benchmark**
 For WH, ZH (WZ→lνbb)

Cross Section Normalization

Components of the WH/ZH searches:
b-tagging, event selection, multivariate analysis, statistical treatment, systematic uncertainties, background modeling

\[\sigma_{WZ} \times \text{BR}(W \rightarrow l\nu; Z \rightarrow bb) \approx 4 \sigma_{WH} \times \text{BR}(W \rightarrow l\nu; H@115 \rightarrow bb) \]
Event Selection, Signal and Background

Data: 4.3 fb\(^{-1}\) of Run lib Data
Trigger Selection: electron(+jets) and inclusive trigger (muon)

Electron:
- \(p_T \geq 15\) GeV, \(|\eta|_{\text{DET}} < 1.1\)

Muon:
- \(p_T \geq 20\) GeV, \(|\eta|_{\text{DET}} \leq 1.6\),
- \(\Delta R_{\mu\text{-jet}} > 0.5\)

Global
- \(\text{MET} \geq 20\) GeV, \(M_T \geq 40 - 0.5 \cdot \text{MET}\)
- \(M_T (\mu\nu) < 200\) GeV, \(|\text{PV}_Z| < 60\) cm

Jets (2 or 3 jet bin):
- Minimum 2 vertex confirmed jets \(p_T^{\text{Jet1,Jet2}} \geq 20\) GeV, \(|\eta|_{\text{DET}} < 2.5\)
- calibrated jets (data and MC)
- Resolution calibration in MC
correction to jet/Z \(p_T\) imbalance and
energy resolution due to the different
quark/gluon sample composition

Event Source	**Generator**	\(\sigma(\text{SM}) / \sigma(\text{WW})\)	\(\sigma(\text{WW}) = 11.7\) pb
WW | Pythia | 1.0 | NLO
WZ | Pythia | 0.3 | NLO
ZZ | Pythia | 0.1 | NLO
W+light flavor jets | Alpgen | 850 | from FIT
W+heavy flavor jets | Alpgen +Pythia | 32 | from FIT
Z+light flavor jets | Alpgen | 32 | NNLO
Z+heavy flavor jets | Alpgen | 1.1 | NNLO
Double-Top | Alpgen +Pythia | 0.6 | NNLO
Single-Top | Comphep +Pythia | 0.2 | NNLO

Events
- Data: 100 k
- W/Z+light f. 70 k
- W/Z +Heavy f. 10 k
- Top 3 k
- Multijet 13 k
- Diboson 3.2 k
Muon channel, 2 jet bin, normalized with a scale factor to match the data (MC\times 1.04)
To separate bb-decays we use a Neural Network b-tagging algorithm.

NN b-tag output: \geq L6 for two leading jets (12 identification points)

$<$ L6 or non-taggable: 0-tag bin

NN b-tag output as an input to a MVA (Random Forest)
Random Forest (RF)
Input: 15 well described variables to separate signal from background (including min. and max. of b-tag NN output, cf backup slides)

- **0-tag**: trained with all dibosons as signal
- **1-tag**: trained with WZ+ZZ as signal
- **2-tag**: trained with WZ+ZZ as signal

after a combined fit to data over all jet/tag sub-channels
Total Diboson cross section

Obtained from the fit to the **Dijet Mass Distributions** or to the Random Forest output, minimizing a χ^2 function with respect to variations in the systematic uncertainties

(simultaneous fit of the electron and muon distributions in the 0, 1, and 2-tag sub-channels, and 2- and 3- jet bins)

- **W+jets and diboson (WW+WZ)** normalizations are free parameters

<table>
<thead>
<tr>
<th></th>
<th>Electron channel</th>
<th>Muon channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diboson signal</td>
<td>1725 ± 84</td>
<td>1465 ± 67</td>
</tr>
<tr>
<td>$W/Z+$light-flavor jets</td>
<td>37200 ± 1000</td>
<td>33520 ± 710</td>
</tr>
<tr>
<td>$W/Z+$heavy-flavor jets</td>
<td>5370 ± 610</td>
<td>4850 ± 490</td>
</tr>
<tr>
<td>$t\bar{t}$ + single top</td>
<td>1750 ± 130</td>
<td>1214 ± 86</td>
</tr>
<tr>
<td>Multijet</td>
<td>10600 ± 1000</td>
<td>1980 ± 380</td>
</tr>
<tr>
<td>Total predicted</td>
<td>56700 ± 720</td>
<td>43030 ± 620</td>
</tr>
<tr>
<td>Data</td>
<td>56698</td>
<td>43044</td>
</tr>
</tbody>
</table>

ZZ contribution to VV $\approx 1.5\%$

Measured $\sigma(WV)$ [pb]:

<table>
<thead>
<tr>
<th>RF Output</th>
<th>Measured $\sigma(WV)$ [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dijet Mass</td>
<td>18.3 ± 1.5 (stat) $^{+3.5}_{-3.3}$ (syst)</td>
</tr>
</tbody>
</table>

SM@NLQ $\sigma(WW+WZ) = 16.1 \pm 0.9$ pb
Total Diboson cross section

Obtained from the fit to the Dijet Mass Distributions or to the Random Forest output, minimizing a χ^2 function with respect to variations in the systematic uncertainties (simultaneous fit of the electron and muon distributions in the 0, 1, and 2-tag sub-channels, and 2- and 3-jet bins)

- W+jets and diboson ($WW+WZ$) normalizations are free parameters

<table>
<thead>
<tr>
<th></th>
<th>Electron channel</th>
<th>Muon channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diboson signal</td>
<td>1725 ± 84</td>
<td>1465 ± 67</td>
</tr>
<tr>
<td>W/Z+light-flavor jets</td>
<td>37200 ± 1000</td>
<td>33520 ± 710</td>
</tr>
<tr>
<td>W/Z+heavy-flavor jets</td>
<td>5370 ± 610</td>
<td>4850 ± 490</td>
</tr>
<tr>
<td>$t\bar{t}$ + single top</td>
<td>1750 ± 130</td>
<td>1214 ± 86</td>
</tr>
<tr>
<td>Multijet</td>
<td>10600 ± 1000</td>
<td>1980 ± 380</td>
</tr>
<tr>
<td>Total predicted</td>
<td>56700 ± 720</td>
<td>43030 ± 620</td>
</tr>
<tr>
<td>Data</td>
<td>56698</td>
<td>43044</td>
</tr>
</tbody>
</table>

Measured $\sigma(WV)$ [pb]

- RF Output: 19.6 ± 1.4 (stat) $^{+2.9}_{-2.7}$ (syst)
- Dijet Mass: 18.3 ± 1.5 (stat) $^{+3.5}_{-3.3}$ (syst)

$\text{SM@NLO } \sigma(WW+WZ) = 16.1 \pm 0.9 \text{ pb}$
\[\sigma_{RF}(WW + WZ) = 19.6 \pm 3.2 - 3.0 \text{ pb} \Rightarrow \text{significance} : 7.9\sigma \text{ (expected} : 5.9\sigma) \]
\[\sigma_{MJJ}(WW + WZ) = 18.3 \pm 3.8 - 3.6 \text{ pb} \Rightarrow \text{significance} : 5.6\sigma \text{ (expected} : 4.6\sigma) \]

Significance gain from the Multi Variate Approach: 22%

Significance:

\[\Delta \chi^2 = -2 \ln \left(\frac{L(D; S + B, \theta_k)}{L(D; B, \theta_k)} \right) = \left| \chi^2(D; S + B, \theta_k) - \chi^2(D; B, \theta_k) \right| \]

D: data or background-only
WW & WZ cross sections

From the fit to data of the Random Forest output (or the Dijet Mass Distributions), minimizing a χ^2 function with respect to variations in the systematic uncertainties (simultaneous fit of the electron and muon distributions in the 0, 1, and 2-tag sub-channels, and 2- and 3-jet bins)
WW & WZ cross sections

From the fit to data of the Random Forest output (or the Dijet Mass Distributions), minimizing a χ^2 function with respect to variations in the systematic uncertainties (simultaneous fit of the electron and muon distributions in the 0, 1, and 2-tag sub-channels, and 2- and 3- jet bins)

Taking $W+\text{jets}$, WW and WZ normalizations are free parameters:

$$\sigma_{RF}(WW) = 15.9 \pm 3.7 \text{ pb}$$

$$\sigma_{RF}(WZ) = 3.3 \pm 4.1 \text{ pb}$$

SM@NLO $\sigma(WW) = 11.7 \pm 0.8 \text{ pb}$

SM@NLO $\sigma(WZ) = 3.5 \pm 0.3 \text{ pb}$

Constraining WW:

$$\sigma_{WW \text{ fixed}}^{RF} (WZ) = 6.5 \pm 3.1 \text{ pb}$$

observed significance: 2.2σ (expected: 1.2σ)
Summary

- DØ analyzed $l\nu jj$ final states (e, μ) using 4.3 fb$^{-1}$ of RunIIb data.
- Kinematic distributions in good agreement with the SM predictions.
- Measured WW+WZ cross section in agreement with the SM, using similar techniques as in the Higgs WH analysis \(\Rightarrow \) yields 7.9σ observed significance.
- Extraction of the WZ signal (2.2 σ observed).

<table>
<thead>
<tr>
<th>Cross Sections</th>
<th>WW</th>
<th>WW+WZ</th>
<th>WW part</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$l\nu l\nu$ [pb]</td>
<td>$l\nu jj$ [pb]</td>
<td>$l\nu jj$ [pb]</td>
</tr>
<tr>
<td>4.3/fb</td>
<td>12.1 ± 1.8</td>
<td>18.1 ± 4.1</td>
<td></td>
</tr>
<tr>
<td>1.1/fb</td>
<td>11.5 ± 2.2</td>
<td>20.2 ± 4.6</td>
<td></td>
</tr>
<tr>
<td>4.3/fb</td>
<td>19.6$^{+3.2-3.0}$</td>
<td>15.9$^{+3.7-3.2}$</td>
<td></td>
</tr>
</tbody>
</table>
Backup Slides
Additional MC Corrections

ALPGEN jet η Reweighting

Correction to W/Z+jets MC samples [shape $\sim \frac{\text{data-QCD-nonVjets}}{Vjets}$]

Before correction

After correction
Backup: RF Input Variables (1)
Backup: RF Input Variables (II)
Modeling of SM processes

RunIIb1 MC

<table>
<thead>
<tr>
<th>Event Source</th>
<th>Generator</th>
<th>σ(SM) / σ(WW)</th>
<th>σ(WW) = 11.7 pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW</td>
<td>Pythia</td>
<td>1.0</td>
<td>NLO</td>
</tr>
<tr>
<td>WZ</td>
<td>Pythia</td>
<td>0.3</td>
<td>NLO</td>
</tr>
<tr>
<td>ZZ</td>
<td>Pythia</td>
<td>0.1</td>
<td>NLO</td>
</tr>
<tr>
<td>W+light flavor jets</td>
<td>Alpgen</td>
<td>850</td>
<td>from FIT</td>
</tr>
<tr>
<td>W+heavy flavor jets</td>
<td>Alpgen</td>
<td>32</td>
<td>from FIT</td>
</tr>
<tr>
<td>Z+light flavor jets</td>
<td>Alpgen</td>
<td>+Pythia</td>
<td>32</td>
</tr>
<tr>
<td>Z+heavy flavor jets</td>
<td>Alpgen</td>
<td>+Pythia</td>
<td>1.1</td>
</tr>
<tr>
<td>Double-Top</td>
<td>Alpgen</td>
<td>+Pythia</td>
<td>0.6</td>
</tr>
<tr>
<td>Single-Top</td>
<td>Comphep</td>
<td>+Pythia</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Standard MC Corrections

(to account for differences from data)

- Reconstruction and Identification efficiencies of leptons/jets
- Trigger selection
- Z boson p_T modeling (njet-dependent)
- W boson p_T modeling (inclusive)
- Luminosity reweighting, beam z-position reweighting

Multijet Background

(jet misidentified as a lepton)

- Estimated from (multijet enriched) data
 - Muon channel: Reverse muon isolation cuts
 - Electron channel: Loose electron quality criteria
- Corrected for contributions already accounted for by MC
- Normalization: template fit of $M_T(W\rightarrow l\nu)$
Additional MC Corrections

Inclusive Muon Trigger Modeling

- Inclusive trigger gives ~50% increase in statistics on Single Muon OR (additional data collected by jet triggers mainly)
- Modeling: bootstrap from SMOR parameterized in HT ($p_{T}^{j1}+p_{T}^{j2}$)
- Correction: data driven, as a function of HT

\[
\varepsilon^{\text{Inclusive}} = \varepsilon^{\text{SMOR}} + \varepsilon^{\text{JETS (correction)}} \quad (\text{max } \varepsilon^{\text{JETS}} < 1 - \varepsilon^{\text{SMOR}})
\]

\[
\varepsilon^{\text{JETS}} = \left[\frac{N_{\text{data}}^{\text{Inclusive}} - QCD_{\text{Inclusive}} - N_{\text{SMOR}}^{\text{data}} - QCD_{\text{SMOR}}}{N_{\text{MC}}^{\text{Inclusive}}} \right]
\]

- **muon, 2 jet bin**
- **muon, 3+4 jet bin**
Additional MC Corrections

Inclusive Muon Trigger Modeling

- Inclusive trigger gives ~50% increase in statistics on Single Muon OR (additional data collected by jet triggers mainly)
- Modeling: bootstrap from SMOR parameterized in HT ($p_T^{j1}+p_T^{j2}$)
- Correction: data driven, as a function of HT

$$\epsilon^{\text{Inclusive}} = \epsilon^{\text{SMOR}} + \epsilon^{\text{JETS \ (correction)}} \ (\text{max} \ \epsilon^{\text{JETS}} < 1 - \epsilon^{\text{SMOR}})$$

$$\epsilon^{\text{JETS}} = \left[\frac{N_{\text{data}}^{\text{Inclusive}} - \text{QCD}_{\text{Inclusive}} - N_{\text{SMOR}}^{\text{data}} - \text{QCD}^{\text{SMOR}}}{N_{\text{MC}}^{\text{Inclusive}}} \right]$$

muon, 2 jet bin

muon, 3+4 jet bin
(1) Unclustered Energy (UE) Reweighting

- Sum of the energy deposits in EM, HAD, ICD not associated to a jet
- Overlaid MB, low p_T objects (jets, muons) not accounted for in missing E_T
- Correction to all MC samples [shape $\sim (data-QCD)/MC$]
(2) ALPGEN jet η Reweighting
To separate bb-decays we use NN b-tagging algorithm.

Taggable jets are good vertex confirmed jets ($\varepsilon_{\text{data}} < \varepsilon_{\text{MC}}$)

MC correction for each η_{jet} in different z_{PV} bins:

- $(z \leq -30)$
- $(-30 < z \leq 0)$
- $(0 < z \leq 30)$
- $(30 < z)$

$$SF_{\text{taggable}}(z,\eta) = \frac{\varepsilon_{\text{data}}(z,\eta)}{\varepsilon_{\text{MC}}(z,\eta)}; \quad SF_{\text{non-taggable}}(z,\eta) = \frac{1 - \varepsilon_{\text{data}}(z,\eta)}{1 - \varepsilon_{\text{MC}}(z,\eta)}$$
Electron channel, 2 jet bin, normalized with a scale factor to match the data (MC×0.95)

Muon channel, 2 jet bin, normalized with a scale factor to match the data (MC×1.04)
(2) ALPGEN jet η Reweighting

- Correction to W/Z+jets MC samples [shape \sim (data-QCD-nonVjets)/Vjets]

Also derived for $\sigma(VV)\times0$ and $\sigma(VV)\times2$ (fit systematics)
Additional MC Corrections (cont’d)

(4) ALPGEN parton-jet p_T Matching Reweighting

- minimum p_T for jet clusters that are used for the MLM jet-parton matching procedure
- recommended: the generator level jet p_T cut + 20% (or 5 GeV if larger)

(5) Diboson Modeling

- LO-to-NLO correction at the generator level using MC@NLO+Herwig
- 2D reweighting (p_T VV - leading V) applied to WW and WZ events
- Systematic uncertainty is half the size of the correction

I. Each reweighting preserves the total normalization of the MC that is being reweighted

II. Two systematic uncertainties for each reweighting:

- From the fit uncertainty; vary the fit parameter that causes the most change in shape, using the covariance matrix to change the other parameters accordingly
- The uncertainty on the diboson cross section (0 and $2 \times \sigma_{SM}$), taken as correlated between reweightings