An Explicit SU(I2) Family and Flavor Unification Model

Carl H. Albright
Northern Illinois U. and Fermilab

Robert P. Feger and Thomas W. Kephart
Vanderbilt University

arXiv: I204.547 I
Phys. Rev. D (in press)

LieART Mathematica Package

R.P. F., T.W. K., arXiv:I 206.6263

ICHEP20I2 Melbourne, 6 July 2012

MOTIVATION

- In standard GUT models such as $\mathrm{SU}(5), \mathrm{SO}(\mathrm{I} 0)$, and E_{6}, only appropriate chiral IRs available are $\mathrm{SU}(5): 10, \overline{5} ; \quad \mathrm{SO}(10): 16 ; \quad \mathrm{E}_{6}: 27$
so a flavor symmetry must be introduced to distinguish families in the direct product group $\mathrm{G}_{\text {family }} \times \mathrm{G}_{\text {flavor }}$
- Family and flavor unification requires a higher rank simple group. Some earlier studies made were based on SO(I8), SU(II), SU(8), and $\mathrm{SU}(9)$, but these were not totally satisfactory.
- Here I describe an $\operatorname{SU}(\mathrm{I} 2)$ model with interesting features that was constructed with the help of a Mathematica computer package called LieART written by Robert Feger and Tom Kephart. This allows one to compute tensor products, branching rules, etc., and perform detailed searches for satisfactory models: arXiv: I206.6362

SU(I2) UNIFICATION MODEL

- $\operatorname{SU}(\mathrm{I} 2)$ has 12 totally antisymmtric IRs:
$12,66,220,495,792,924, \overline{792}, \overline{495}, \overline{220}, \overline{66}, \overline{12}, 1$ allowing $3 \mathrm{SU}(5)$ families to be assigned to different IRs.
- Choose an anomaly-free set of $\operatorname{SU}(\mathrm{I} 2)$ IRs which contains 3 chiral $\operatorname{SU}(5)$ families and pairs of fermions which become massive at $\mathrm{SU}(5)$ scale:

$$
\begin{aligned}
& 6(495)+4(\overline{792})+4(\overline{220})+(\overline{66})+4(\overline{12}) \\
& \quad \rightarrow 3(10+\overline{5}+1)+238(5+\overline{5})+211(10+\overline{10})+484(1)
\end{aligned}
$$

given the $\mathrm{SU}(\mathrm{I} 2) \rightarrow \mathrm{SU}(5)$ branching rules:

$$
\begin{aligned}
\frac{495}{\overline{792}} & \rightarrow 35(5)+21(10)+7(\overline{10})+\overline{5}+35(1) \\
\overline{\mathbf{2 2 0}} & \rightarrow 10+7(\overline{10})+21(\overline{\mathbf{1 0}})+35(1) \\
\overline{66} & \rightarrow \overline{10}+7(\overline{5})+21(1) \\
\overline{12} & \rightarrow \overline{5}+7(1)
\end{aligned}
$$

PARTICLE ASSIGNMENTS

Ist Family: $(10) 495_{1} \quad \supset u_{L}, u_{L}^{c}, d_{L}, e_{L}^{c}$
$\left(\overline{5}_{5} \overline{\mathbf{6 6}}_{1} \supset \mathrm{~d}_{\mathrm{L}}^{\mathrm{c}}, \mathrm{e}_{\mathrm{L}}, \nu_{1 \mathrm{~L}}\right.$
(1) $\overline{792}_{1} \quad \supset \quad \mathrm{~N}_{1 \mathrm{~L}}^{\mathrm{c}}$

2nd Family: $\quad(\mathbf{1 0}) \overline{792}_{2} \supset \mathrm{c}_{\mathbf{L}}, \mathrm{c}_{\mathrm{L}}^{\mathrm{c}}, \mathrm{s}_{\mathrm{L}}, \mu_{\mathrm{L}}^{\mathrm{c}}$
$(\overline{5}) \overline{792}_{2} \supset \mathrm{~s}_{\mathbf{L}}^{\mathrm{c}}, \mu_{\mathrm{L}}, \nu_{2 \mathrm{~L}}$
(1) $\overline{220}_{2} \quad \supset \quad \mathbf{N}_{2 \mathrm{~L}}^{\mathrm{c}}$

3rd Family: $\quad(\mathbf{1 0}) \overline{\mathbf{2 2 0}}_{\mathbf{3}} \quad \supset \quad \mathbf{t}_{\mathbf{L}}, \mathbf{t}_{\mathbf{L}}^{\mathbf{c}}, \mathrm{b}_{\mathbf{L}}, \tau_{\mathbf{L}}^{\mathbf{c}}$
($\overline{5}) \overline{792}_{3} \quad \supset \quad \mathrm{~b}_{\mathrm{L}}^{\mathrm{c}}, \tau_{\mathrm{L}}, \nu_{\mathbf{3 L}}$
(1) $\overline{12}_{3} \quad \supset \quad \mathbf{N}_{3 \mathrm{~L}}^{\mathrm{c}}$

SU(12) Anomaly-free Set:
$6(495)+4(\overline{792})+4(\overline{220})$
$+(\overline{66})+4(\overline{\mathbf{1 2}})$

- Among SU(I2) anomaly-free set, 5(495)'s, 2($\overline{\mathbf{2 2 0}})^{\prime} \mathrm{s}, \mathbf{3}(\overline{\mathbf{1 2}})^{\prime}$ s are unassigned, become massive at $\mathrm{SU}(5)$ scale and decouple.
- Introduce massive fermion pairs $220 \times \overline{\mathbf{2 2 0}}, 792 \times \overline{\mathbf{2 9 2}}$ at $\mathrm{SU}(12)$ scale.
- $(1) 66_{H},(1) \overline{66}_{H},(1) 220_{H},(1) \overline{220}_{H}$ conjugate Higgs pairs acquire $\operatorname{SU}(5)$ singlet VEVs at SU(5) scale, where $\epsilon \equiv \mathrm{M}_{\mathrm{SU}(5)} / \mathrm{M}_{\mathrm{SU}(12)} \sim 1 / 50$
- (5) $924_{\mathrm{H}},(\overline{5}) 924_{\mathrm{H}}$ affect EW symmetry breaking at EW scale.

EFFECTIVE THEORY APPROACH

- Start with SU(I2) SUSY model which can be broken down via a 143 adjoint Higgs

$$
\mathrm{SU}(12) \rightarrow \mathrm{SU}(5) \times \mathrm{SU}(7) \times \mathrm{U}(\mathbf{1})
$$

and finally to $\operatorname{SU}(5)$ via a set of antisymmetric chiral superfield IRs appropriately chosen to preserve SUSY.

- Unbroken SUSY at the $\operatorname{SU}(5)$ scale allows us to deal only with tree diagrams, for loop corrections are much suppressed.
- Examples: 33 contributions to Up and Down Quark Mass Matrices

$(10) \overline{\mathbf{2 2 0}}_{3} \cdot(5) \mathbf{9 2 4}_{\mathrm{H}} \cdot(10) \overline{\mathbf{2 2 0}}_{3}$

$$
\sim h_{33}^{u} v u_{3 L}^{T} u_{3 L}^{c}
$$

$$
(10) \overline{220}_{3} \cdot(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220 \cdot(1) 66_{\mathrm{H}} \cdot(\overline{5}) \overline{792}_{:}
$$

$$
\sim \mathbf{h}_{33}^{\mathrm{d}} \epsilon \mathrm{v} \mathrm{~d}_{3 \mathrm{~L}}^{\mathrm{T}} \mathrm{~d}_{3 \mathrm{~L}}^{\mathrm{c}} \quad \mathbf{v}=174 \mathrm{GeV}
$$

- Every $\operatorname{SU(5)}$ Higgs singlet insertion introduces one power of epsilon.

Up-Type Quark Mass-Term Diagrams
Dim 4: U33: (10) $\overline{220}_{3} .(5) 924_{\mathrm{H}} .(10) \overline{220}_{3}$
Dim 5: U23: (10) $\overline{792}_{2} \cdot(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} .(5) 924_{\mathrm{H}} \cdot(10) \overline{220}_{3}$
U32: (10) $\overline{220}_{3} .(5) 924_{\mathrm{H}} \cdot(10) \overline{220} \times(\overline{10}) 220 .(1) 66_{\mathrm{H}} \cdot(10) \overline{792}_{2}$
Dim 6: U13: (10) $495_{1} \cdot(1) 220_{\mathrm{H}} \cdot(\overline{10}) 792 \times(10) \overline{792} \cdot(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} \cdot(5) 924_{\mathrm{H}} \cdot(10) \overline{220}_{3}$
U31: (10) $\overline{220}_{3} .(5) 924_{\mathrm{H}} \cdot(10) \overline{220} \times(\overline{10}) 220 .(1) 66_{\mathrm{H}} \cdot(10) \overline{792} \times(\overline{10}) 792 .(1) 220_{\mathrm{H}} \cdot(10) 495_{1}$
U22: (10) $\overline{792}_{2} .(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} .(5) 924_{\mathrm{H}} \cdot(10) \overline{220} \times(\overline{10}) 220 .(1) 66_{\mathrm{H}} \cdot(10) \overline{792}_{2}$
Dim 7: U12: (10) $495_{1} \cdot(1) 220_{\mathrm{H}} \cdot(\overline{10}) 792 \times(10) \overline{792} .(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} \cdot(5) 924_{\mathrm{H}} \cdot(10) \overline{220} \times(\overline{10}) 220 .(1) 66_{\mathrm{H}} \cdot(10) \overline{792}_{2}$
U21: $(10) \overline{792}_{2} .(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} .(5) 924_{\mathrm{H}} \cdot(10) \overline{220} \times(\overline{10}) 220 .(1) 66_{\mathrm{H}} \cdot(10) 792 \times(\overline{10}) 792 .(1) 220_{\mathrm{H}} \cdot(10) 495_{1}$
Dim 8: U11: (10) $495_{1} .(1) 220_{\mathrm{H}} \cdot(\overline{10}) 792 \times(10) \overline{792} .(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} \cdot(5) 924_{\mathrm{H}} \cdot(10) \overline{220} \times(\overline{10}) 220$

$$
.(1) 66_{\mathrm{H}} \cdot(10) \overline{792} \times(\overline{10}) 792 \cdot(1) 220_{\mathrm{H}} \cdot(10) 495_{1}
$$

Down-Type Quark Mass-Term Diagrams
Dim 5: D32: $(10) \overline{220}_{3} \cdot(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220 .(1) 66_{\mathrm{H}} \cdot(\overline{5}) \overline{792}_{2}$
D33: (10) $\overline{220}_{3} \cdot(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220 \cdot(1) 66_{\mathrm{H}} \cdot(\overline{5}) \overline{792}_{3}$
Dim 6: D31: (10) $\overline{220}_{3} \cdot(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220 .(1) 66_{\mathrm{H}} \cdot(\overline{5}) \overline{792} \times(5) 792 \cdot(1) \overline{220}_{\mathrm{H}} \cdot(\overline{5}) \overline{66}_{1}$
D22: (10) $\overline{792}_{2} \cdot(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} \cdot(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220 \cdot(1) 66_{\mathrm{H}} \cdot(\overline{5}) \overline{792}_{2}$
D23: (10) $\overline{792}_{2} \cdot(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} \cdot(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220 .(1) 66_{\mathrm{H}} \cdot(\overline{5}) \overline{792}_{3}$
Dim 7: D12: (10)4951. (1)220 ${ }_{\mathrm{H}} \cdot(\overline{10}) 792 \times(10) \overline{792} \cdot(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} \cdot(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220 \cdot(1) 66_{\mathrm{H}} \cdot(\overline{5}) \overline{792_{2}}$
D21: $(10) \overline{792}_{2} \cdot(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} \cdot(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220 \cdot(1) 66_{\mathrm{H}} \cdot(\overline{5}) \overline{792} \times(5) 792 \cdot(1) \overline{220}_{\mathrm{H}} \cdot\left(\overline{5}^{5}\right) \overline{66}_{1}$
D13: (10)495. (1) $220_{\mathrm{H}} \cdot(\overline{10}) 792 \times(10) \overline{792} .(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} .(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220 .(1) 66_{\mathrm{H}} \cdot(\overline{5}) \overline{792}{ }_{3}$
Dim 8: D11: (10)4951.(1)220 \cdot. ($\overline{10}) 792 \times(10) \overline{792}$. (1) $66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} \cdot(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220$ (1) $66_{\mathrm{H}} \cdot(\overline{5}) \overline{792} \times(5) 792 .(1) 220_{\mathrm{H}} \cdot(\overline{5}) \overline{66}_{1}$

Dirac-Neutrino Mass-Term Diagrams
Dim 4: DN23: ($\overline{5}) \overline{792}_{2} \cdot(5) 924_{\mathrm{H}} \cdot(1) \overline{12}_{3}$
DN33: ($\overline{5}) \overline{792}_{3} .(5) 924_{\mathrm{H}} \cdot(1) \overline{12}_{3}$
Dim 5: DN13: ($\overline{5}) \overline{66}_{1} \cdot(1) \overline{220}_{\mathrm{H}} \cdot(5) 792 \times(\overline{5}) \overline{792} .(5) 924_{\mathrm{H}} \cdot(1) \overline{12}_{3}$
DN22: ($\overline{5}) \overline{792}_{2} .(1) 66_{\mathrm{H}} \cdot(5) 220 \times(\overline{5}) \overline{220}$. (5) $924_{\mathrm{H}} \cdot(1) \overline{220}_{2}$
DN32: ($\overline{5}) 792_{3} .(1) 66_{\mathrm{H}} .(5) 220 \times(\overline{5}) \overline{220}$. (5) $924_{\mathrm{H}} \cdot(1) \overline{220}_{2}$
Dim 6: DN12: ($\overline{5}) \overline{66}_{1} \cdot(1) \overline{220}_{\mathrm{H}} \cdot(5) 792 \times(\overline{5}) \overline{792} \cdot(1) 66_{\mathrm{H}} \cdot(5) 220 \times(\overline{5}) \overline{220} .(5) 924_{\mathrm{H}} \cdot(1) \overline{220}_{2}$
DN21: ($\overline{5}) \overline{792}_{2} .(1) 66_{\mathrm{H}} \cdot(5) 220 \times(\overline{5}) \overline{220}$. (5) $924_{\mathrm{H}} \cdot(1) \overline{220} \times(1) 220 .(1) 66_{\mathrm{H}} \cdot(1) \overline{792}_{1}$
DN31: ($\overline{5}) \overline{792}_{3} .(1) 66_{\mathrm{H}} \cdot(5) 220 \times(\overline{5}) \overline{220}$. (5) $924_{\mathrm{H}} .(1) \overline{220} \times(1) 220 .(1) 66_{\mathrm{H}} \cdot(1) \overline{792}_{1}$
Dim 7: DN11: ($\overline{5}) \overline{66}_{1} \cdot(1) \overline{220}_{\mathrm{H}} \cdot(5) 792 \times(\overline{5}) \overline{792} .(1) 66_{\mathrm{H}} \cdot(5) 220 \times(\overline{5}) \overline{220} .(5) 924_{\mathrm{H}} \cdot(1) \overline{220} \times(1) 220 .(1) 66_{\mathrm{H}} \cdot(1) \overline{792}_{1}$
Majorana-Neutrino Mass-Term Diagrams
Dim 4: MN11: (1) $\overline{792}_{1} \cdot(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{792}_{1}$
MN33: (1) $\overline{12}_{3} .(1) 66_{\mathrm{H}} \cdot(1) \overline{12}_{3}$
Dim 5: MN12: (1) $\overline{792}_{1} \cdot(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{792} \times(1) 792 .(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{220}_{2}$
MN21: (1) $\overline{220}_{2} .(1) \overline{66}_{\mathrm{H}} \cdot(1) 792 \times(1) \overline{792}^{(1)}(1) \overline{66}_{\mathrm{H}} .(1) \overline{792}_{1}$
Dim 6: MN13: (1) $\overline{792}_{1} .(1) \overline{66}_{\mathrm{H}} .(1) \overline{792} \times(1) 792 .(1) \overline{66}_{\mathrm{H}} .(1) \overline{220} \times(1) 220 .(1) \overline{66}_{\mathrm{H}} .(1) \overline{12}_{3}$
MN31: (1) $\overline{12}_{3} \cdot(1) \overline{66}_{\mathrm{H}} \cdot(1) 220 \times(1) \overline{220} .(1) \overline{66}_{\mathrm{H}} \cdot(1) 792 \times(1) 792 \cdot(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{792}_{1}$
MN22: (1) $\overline{220}_{2}$.(1) $\overline{66}_{\mathrm{H}}$.(1) $792 \times$ (1) 792 .(1) $\overline{66}_{\mathrm{H}}$.(1) $\overline{792} \times$ (1)792.(1) $\overline{66}_{\mathrm{H}}$.(1) $22 \mathrm{D}_{2}$
Dim 7: MN23: (1) $\overline{220}_{2} .(1) \overline{66}_{\mathrm{H}} \cdot(1) 792 \times(1) \overline{792}^{2} .(1) \overline{66}_{\mathrm{H}} .(1) \overline{792} \times(1) 792 .(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{220} \times(1) 220 .(1) \overline{66}_{\mathrm{H}} .(1) \overline{12}_{3}$
MN32: (1) $\overline{12}_{3} \cdot(1) \overline{66}_{\mathrm{H}} \cdot(1) 220 \times(1) \overline{220}^{2} .(1) \overline{66}_{\mathrm{H}} \cdot(1) 792 \times(1) \overline{792} \cdot(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{792} \times(1) 792 \cdot(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{220}_{2}$

MASS MATRICES: LEADING ORDER TERMS

- Dropping the prefactors:

$$
\begin{gathered}
\mathbf{M}_{\mathbf{U}} \sim\left(\begin{array}{ccc}
\epsilon^{4} & \epsilon^{3} & \epsilon^{2} \\
\epsilon^{3} & \epsilon^{2} & \epsilon \\
\epsilon^{2} & \epsilon & 1
\end{array}\right) \mathbf{v}, \quad \mathbf{M}_{\mathbf{D}} \sim\left(\begin{array}{ccc}
\epsilon^{4} & \epsilon^{3} & \epsilon^{3} \\
\epsilon^{3} & \epsilon^{2} & \epsilon^{2} \\
\epsilon^{2} & \epsilon & \epsilon
\end{array}\right) \mathbf{v} \\
\mathbf{M}_{\mathbf{D N}} \sim\left(\begin{array}{lll}
\epsilon^{3} & \epsilon^{2} & \epsilon \\
\epsilon^{2} & \epsilon & 1 \\
\epsilon^{2} & \epsilon & 1
\end{array}\right) \mathbf{v}, \quad \mathbf{M}_{\mathbf{M N}} \sim\left(\begin{array}{ccc}
1 & \epsilon & \epsilon^{2} \\
\epsilon & \epsilon^{2} & \epsilon^{3} \\
\epsilon^{2} & \epsilon^{3} & 1
\end{array}\right) \mathbf{\Lambda}_{\mathbf{R}} \\
\mathbf{M}_{\mathbf{L}} \sim \mathbf{M}_{\mathbf{D}}^{\mathbf{T}}, \quad \mathbf{M}_{\nu}=-\mathbf{M}_{\mathbf{D N}} \mathbf{M}^{-\mathbf{1}} \mathbf{M}_{\mathbf{D} \mathbf{N}}^{\mathbf{T}} \sim\left(\begin{array}{ccc}
\epsilon^{2} & \epsilon & \epsilon \\
\epsilon & 1 & 1 \\
\epsilon & 1 & 1
\end{array}\right) \mathbf{v}^{\mathbf{2}} / \mathbf{\Lambda}_{\mathbf{R}}
\end{gathered}
$$

- $\mathbf{M}_{\mathbf{U}}, \mathbf{M}_{\mathbf{M N}}, \mathbf{M}_{\nu}$ are symmetric, $\mathbf{M}_{\mathbf{D}}, \mathbf{M}_{\mathbf{L}}, \mathbf{M}_{\mathbf{D N}}$ doubly lopsided. Note that \mathbf{M}_{ν} has a mild hierarchy.

PHENOMENOLOGICAL FIT

- 25 leading independent prefactors $+\boldsymbol{\Lambda}_{\mathbf{R}}$ are used to fit 30 data parameters with fixed $\epsilon=(1 / 6.5)^{2}=0.0237$
- Best fit obtained with Normal Hierarchy and

$$
\begin{aligned}
& \Lambda_{\mathbf{R}}=\mathrm{M}_{\mathrm{SU}(5)}=7.4 \times 10^{14} \mathrm{GeV} \\
& \Rightarrow \mathbf{M}_{\mathrm{SU}(12)}=\Lambda_{\mathbf{R}} / \epsilon=3.1 \times 10^{16} \mathrm{GeV} \text {, } \\
& \mathrm{m}_{1}=0, \quad \mathrm{M}_{1}=1.67 \times 10^{12} \mathrm{GeV}, \\
& \mathrm{M}_{2}=6.85 \times 10^{13} \mathrm{GeV} \text {, } \\
& \mathrm{M}_{\mathbf{3}}=\mathbf{5 . 3 0} \times \mathbf{1 0}^{\mathbf{1 4}} \mathrm{GeV}
\end{aligned}
$$

MATRICES GIVING BEST FIT

$$
\begin{gathered}
M_{\mathrm{U}}=\left(\begin{array}{ccc}
-1.1 \varepsilon^{4} & 7.1 \varepsilon^{3} & 5.6 \varepsilon^{2} \\
7.1 \varepsilon^{3} & -6.2 \varepsilon^{2} & -0.10 \varepsilon \\
5.6 \varepsilon^{2} & -0.10 \varepsilon & -0.95
\end{array}\right) v, \quad M_{\mathrm{D}}=\left(\begin{array}{ccc}
-6.3 \varepsilon^{4} & 8.0 \varepsilon^{3} & -1.9 \varepsilon^{3} \\
-4.5 \varepsilon^{3} & 0.38 \varepsilon^{2} & -1.3 \varepsilon^{2} \\
0.88 \varepsilon^{2} & -0.23 \varepsilon & -0.51 \varepsilon
\end{array}\right) v, \\
M_{\mathrm{DN}}=\left(\begin{array}{cccc}
h_{1 \mathrm{dn}}^{\mathrm{dn}} \varepsilon^{3} & 0.21 \varepsilon^{2} & -2.7 \varepsilon \\
h_{21}^{\mathrm{dn}} \varepsilon^{2} & -0.28 \varepsilon & -0.15 \\
h_{31}^{\mathrm{dn}} \varepsilon^{2} & 2.1 \varepsilon & 0.086
\end{array}\right) v, \quad M_{\mathrm{MN}}=\left(\begin{array}{ccc}
-0.72 & -1.5 \varepsilon & h_{13}^{\mathrm{mn}} \varepsilon^{2} \\
-1.5 \varepsilon & 0.95 \varepsilon^{2} & h_{23}^{\mathrm{mn}} \varepsilon^{3} \\
h_{13}^{\mathrm{mn}} \varepsilon^{2} & h_{23}^{\mathrm{mn}} \varepsilon^{3} & 0.093
\end{array}\right) \Lambda_{\mathrm{R}} \\
M_{\nu}=\left(\begin{array}{ccc}
-81 . \varepsilon^{2} & -4.3 \varepsilon & 2.4 \varepsilon \\
-4.3 \varepsilon & -0.25 & 0.28 \\
2.4 \varepsilon & 0.28 & -1.1
\end{array}\right) \frac{v^{2}}{\Lambda_{\mathrm{R}}},
\end{gathered}
$$

- All prefactors except one are within $\mathcal{O}(\mathbf{0 . 1}-\mathbf{1 0})$ of unity.

SUMMARY

- Unified SU(I2) SUSY GUT model obtained by brute force computer scan over all $\mathrm{SU}(\mathrm{I} 2)$ anomaly-free sets of IRs containing $3 \mathrm{SU}(5)$ chiral families under the assumption that $\mathrm{SU}(\mathrm{I} 2) \rightarrow \mathrm{SU}(5) \rightarrow \mathrm{SM}$, looping over all $\mathrm{SU}(\mathrm{I} 2)$ fermion and Higgs assignments that give good fits to the input data.
- For this purpose an effective theory approach was used to determine leading order tree-level diagrams for dim-(4+n) matrix elements in powers of ϵ^{n} where epsilon is the ratio of the $\mathrm{SU}(5)$ to $\mathrm{SU}(\mathrm{I} 2)$ scale. Best fit obtained by requiring all prefactors be $\mathcal{O}(\mathbf{1})$, but large number of them implies few predictions.
- This model is just one of many possibilities (including other smaller $\mathrm{SU}(\mathrm{N})$ groups), but its features were among most attractive found.
- Model serves as an existence proof for unification of family and flavor.

