An Explicit SU(12) Family and Flavor Unification Model

Carl H. Albright Northern Illinois U. and Fermilab

Robert P. Feger and Thomas W. Kephart Vanderbilt University

arXiv: 1204.5471 Phys. Rev. D (in press) LieART Mathematica Package R.P. F., T.W. K., arXiv: 1206.6263

ICHEP2012 Melbourne, 6 July 2012

MOTIVATION

- In standard GUT models such as SU(5), SO(10), and E_6 , only appropriate chiral IRs available are $SU(5): 10, \overline{5}; SO(10): 16; E_6: 27$ so a flavor symmetry must be introduced to distinguish families in the direct product group $G_{family} \times G_{flavor}$
- Family and flavor unification requires a higher rank simple group.
 Some earlier studies made were based on SO(18), SU(11), SU(8), and SU(9), but these were not totally satisfactory.
- Here I describe an SU(12) model with interesting features that was constructed with the help of a Mathematica computer package called LieART written by Robert Feger and Tom Kephart. This allows one to compute tensor products, branching rules, etc., and perform detailed searches for satisfactory models: arXiv: 1206.6362

SU(12) UNIFICATION MODEL

- SU(12) has 12 totally antisymmetric IRs: 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1 allowing 3 SU(5) families to be assigned to different IRs.
- Choose an anomaly-free set of SU(12) IRs which contains 3 chiral SU(5) families and pairs of fermions which become massive at SU(5) scale:

 $6(495) + 4(\overline{792}) + 4(\overline{220}) + (\overline{66}) + 4(\overline{12})$

 $ightarrow 3(10 + \overline{5} + 1) + 238(5 + \overline{5}) + 211(10 + \overline{10}) + 484(1)$

given the SU(12) \rightarrow SU(5) branching rules:

495	\rightarrow	${f 35(5)+21(10)+7(\overline{10})+\overline{5}+35(1)}$
$\overline{792}$	\rightarrow	$7(5) + 21(10) + 35(\overline{10}) + 35(\overline{5}) + 22(1)$
$\overline{220}$	\rightarrow	${f 10}+{f 7}(\overline{{f 10}})+{f 21}(\overline{{f 5}})+{f 35}({f 1})$
$\overline{66}$	\rightarrow	$\overline{10} + 7(\overline{5}) + 21(1)$
$\overline{12}$	\rightarrow	${f \overline{5}}+{f 7}({f 1})$

PARTICLE ASSIGNMENTS

- Among SU(12) anomaly-free set, 5(495)'s, $2(\overline{220})'s$, $3(\overline{12})'s$ are unassigned, become massive at SU(5) scale and decouple.
- Introduce massive fermion pairs $220 \times \overline{220}$, $792 \times \overline{292}$ at SU(12) scale.
- $(1)66_{H}, (1)\overline{66}_{H}, (1)220_{H}, (1)\overline{220}_{H}$ conjugate Higgs pairs acquire SU(5) singlet VEVs at SU(5) scale, where $\epsilon \equiv M_{SU(5)}/M_{SU(12)} \sim 1/50$
- $(5)924_{\rm H}, (\overline{5})924_{\rm H}$ affect EW symmetry breaking at EW scale.

EFFECTIVE THEORY APPROACH

 Start with SU(12) SUSY model which can be broken down via a 143 adjoint Higgs

$\mathbf{SU(12)} ightarrow \mathbf{SU(5)} imes \mathbf{SU(7)} imes \mathbf{U(1)}$

and finally to SU(5) via a set of antisymmetric chiral superfield IRs appropriately chosen to preserve SUSY.

- Unbroken SUSY at the SU(5) scale allows us to deal only with tree diagrams, for loop corrections are much suppressed.
- Examples: 33 contributions to Up and Down Quark Mass Matrices

5

Every SU(5) Higgs singlet insertion introduces one power of epsilon.
 ICHEP2012 C. H. Albright An Explicit SU(12) Family and Flavor Unification Model

Up-Type Quark Mass-Term Diagrams

- **Dim 4:** U33: $(10)\overline{220}_3.(5)924_{\rm H}.(10)\overline{220}_3$
- **Dim 5:** U23: $(10)\overline{792}_2.(1)66_H.(\overline{10})220\times(10)\overline{220}.(5)924_H.(10)\overline{220}_3$
 - **U32**: $(10)\overline{220}_3.(5)924_{\rm H}.(\underline{10})\overline{220} \times (\overline{10})\underline{220}.(1)66_{\rm H}.(\underline{10})\overline{792}_2$
- **Dim 6:** U13: $(10)495_1.(1)220_H.(\overline{10})792\times(10)\overline{792}.(1)66_H.(\overline{10})220\times(10)\overline{220}.(5)924_H.(10)\overline{220}_3.(5)924_H.(10)\overline{220}\times(\overline{10})220.(1)66_H.(10)\overline{792}\times(\overline{10})792.(1)220_H.(10)495_1$ U22: $(10)\overline{792}_2.(1)66_H.(\overline{10})220\times(10)\overline{220}.(5)924_H.(10)\overline{220}\times(\overline{10})220.(1)66_H.(10)\overline{792}_2$
- **Dim 7:** U12: $(10)495_1.(1)220_{\rm H}.(\overline{10})792\times(10)\overline{792}.(1)66_{\rm H}.(\overline{10})220\times(10)\overline{220}.(5)924_{\rm H}.(10)\overline{220}\times(\overline{10})220.(1)66_{\rm H}.(10)\overline{792}.(1)66_{\rm H}.(1)6_{\rm H}$
- **Dim 8:** U11: $(10)495_1.(1)220_H.(\overline{10})792\times(10)\overline{792}.(1)66_H.(\overline{10})220\times(10)\overline{220}.(5)924_H.(10)\overline{220}\times(\overline{10})220$. $(1)66_H.(10)\overline{792}\times(\overline{10})792.(1)220_H.(10)495_1$

Down-Type Quark Mass-Term Diagrams

- **Dim 5: D32**: $(10)\overline{220}_3.(\overline{5})924_{\rm H}.(\overline{5})\overline{220} \times (5)220.(1)66_{\rm H}.(\overline{5})\overline{792}_2$
 - **D33**: $(10)\overline{220}_3.(\overline{5})924_{\rm H}.(\overline{5})\overline{220} \times (5)220.(1)66_{\rm H}.(\overline{5})\overline{792}_3$
- $\begin{array}{c} \textbf{Dim 6: } \textbf{D31:} (10)\overline{220}_{3}.(\overline{5})924_{H}.(\overline{5})\overline{220}\times(5)220.(1)66_{H}.(\overline{5})\overline{792}\times(5)792.(1)\overline{220}_{H}.(\overline{5})\overline{66}_{1}\\ \textbf{D22:} (10)\overline{792}_{2}.(1)66_{H}.(\overline{10})220\times(10)\overline{220}.(\overline{5})924_{H}.(\overline{5})\overline{220}\times(5)220.(1)66_{H}.(\overline{5})\overline{792}_{2}\\ \textbf{D23:} (10)\overline{792}_{2}.(1)66_{H}.(\overline{10})220\times(10)\overline{220}.(\overline{5})924_{H}.(\overline{5})\overline{220}\times(5)220.(1)66_{H}.(\overline{5})\overline{792}_{3}\\ \end{array}$
- **Dim 8:** D11: $(10)495_1.(1)220_H.(\overline{10})792\times(10)\overline{792}.(1)66_H.(\overline{10})220\times(10)\overline{220}.(\overline{5})924_H.(\overline{5})\overline{220}\times(5)220$. $(1)66_H.(\overline{5})\overline{792}\times(5)792.(1)\overline{220}_H.(\overline{5})\overline{66}_1$

Dirac-Neutrino Mass-Term Diagrams

- **Dim 4: DN23**: $(\overline{5})\overline{792}_2.(5)924_H.(1)\overline{12}_3$ **DN33**: $(\overline{5})\overline{792}_3.(5)924_H.(1)\overline{12}_3$
- **Dim 5:** DN13: $(\overline{5})\overline{66}_{1.}(1)\overline{220}_{H.}(5)\overline{792} \times (\overline{5})\overline{792}.(5)924_{H.}(1)\overline{12}_{3}$ DN22: $(\overline{5})\overline{792}_{2.}(1)66_{H.}(5)220 \times (\overline{5})\overline{220}.(5)924_{H.}(1)\overline{220}_{2}$ DN32: $(\overline{5})\overline{792}_{3.}(1)66_{H.}(5)220 \times (\overline{5})\overline{220}.(5)924_{H.}(1)\overline{220}_{2}$
- **Dim 6: DN12**: $(\overline{5})\overline{66}_{1.}(1)\overline{220}_{H.}(5)792 \times (\overline{5})\overline{792}.(1)66_{H.}(5)220 \times (\overline{5})\overline{220}.(5)924_{H.}(1)\overline{220}_{2}$ **DN21**: $(\overline{5})\overline{792}_{2.}(1)66_{H.}(5)220 \times (\overline{5})\overline{220}.(5)924_{H.}(1)\overline{220} \times (1)220.(1)66_{H.}(1)\overline{792}_{1}$ **DN31**: $(\overline{5})\overline{792}_{3.}(1)66_{H.}(5)220 \times (\overline{5})\overline{220}.(5)924_{H.}(1)\overline{220} \times (1)220.(1)66_{H.}(1)\overline{792}_{1}$
- **Dim 7: DN11**: $(\overline{5})\overline{66}_{1.}(1)\overline{220}_{H.}(5)792 \times (\overline{5})\overline{792}.(1)66_{H.}(5)220 \times (\overline{5})\overline{220}.(5)924_{H.}(1)\overline{220} \times (1)220.(1)66_{H.}(1)\overline{792}_{1.}(1)\overline{220} \times (1)220.(1)66_{H.}(1)\overline{792}_{1.}(1)\overline{220} \times (1)220.(1)66_{H.}(1)\overline{792}_{1.}(1)\overline{220} \times (1)220.(1)66_{H.}(1)\overline{792}_{1.}(1)\overline{792}_$

Majorana-Neutrino Mass-Term Diagrams

- **Dim 4:** MN11: $(1)\overline{792}_1.(1)\overline{66}_H.(1)\overline{792}_1$ MN33: $(1)\overline{12}_3.(1)66_H.(1)\overline{12}_3$
- **Dim 5:** MN12: $(1)\overline{792}_{1}$. $(1)\overline{66}_{H}$. $(1)\overline{792} \times (1)792.(1)\overline{66}_{H}$. $(1)\overline{220}_{2}$ MN21: $(1)\overline{220}_{2}$. $(1)\overline{66}_{H}$. $(1)792 \times (1)\overline{792}.(1)\overline{66}_{H}$. $(1)\overline{792}_{1}$
- **Dim 6:** MN13: $(1)\overline{792}_{1}$. $(1)\overline{66}_{H}$. $(1)\overline{792}\times(1)\overline{792}$. $(1)\overline{66}_{H}$. $(1)\overline{220}\times(1)220$. $(1)\overline{66}_{H}$. $(1)\overline{12}_{3}$ MN31: $(1)\overline{12}_{3}$. $(1)\overline{66}_{H}$. $(1)220\times(1)\overline{220}$. $(1)\overline{66}_{H}$. $(1)792\times(1)\overline{792}$. $(1)\overline{66}_{H}$. $(1)\overline{792}_{1}$ MN22: $(1)\overline{220}_{2}$. $(1)\overline{66}_{H}$. $(1)792\times(1)\overline{792}$. $(1)\overline{66}_{H}$. $(1)\overline{792}\times(1)\overline{792}$. $(1)\overline{66}_{H}$. $(1)\overline{220}_{2}$
- **Dim 7:** MN23: (1) $\overline{220}_2$.(1) $\overline{66}_{H}$.(1) $792 \times (1)\overline{792}$.(1) $\overline{66}_{H}$.(1) $\overline{792} \times (1)\overline{792}$.(1) $\overline{66}_{H}$.(1) $\overline{220} \times (1)220$.(1) $\overline{66}_{H}$.(1) $\overline{12}_3$ MN32: (1) $\overline{12}_3$.(1) $\overline{66}_{H}$.(1) $220 \times (1)\overline{220}$.(1) $\overline{66}_{H}$.(1) $792 \times (1)\overline{792}$.(1) $\overline{66}_{H}$.(1) $\overline{792} \times (1)\overline{792}$.(1) $\overline{792}$.(1)} $\overline{792}$.(1) $\overline{792}$.(1) $\overline{792}$.(1)} $\overline{792}$.(1) $\overline{792}$.(1)} $\overline{792}$.(1)}{\overline{792}}.(1) $\overline{792}$.(1)}{\overline{792}}.(1)}{\overline{792

One leading-order diagram for each matrix element

MASS MATRICES: LEADING ORDER TERMS

• Dropping the prefactors:

 M_{L}

$$\mathbf{M}_{\mathbf{U}} \sim \begin{pmatrix} \epsilon^{4} & \epsilon^{3} & \epsilon^{2} \\ \epsilon^{3} & \epsilon^{2} & \epsilon \\ \epsilon^{2} & \epsilon & 1 \end{pmatrix} \mathbf{v}, \qquad \mathbf{M}_{\mathbf{D}} \sim \begin{pmatrix} \epsilon^{4} & \epsilon^{3} & \epsilon^{3} \\ \epsilon^{3} & \epsilon^{2} & \epsilon^{2} \\ \epsilon^{2} & \epsilon & \epsilon \end{pmatrix} \mathbf{v}$$
$$\mathbf{M}_{\mathbf{DN}} \sim \begin{pmatrix} \epsilon^{3} & \epsilon^{2} & \epsilon \\ \epsilon^{2} & \epsilon & 1 \\ \epsilon^{2} & \epsilon & 1 \end{pmatrix} \mathbf{v}, \qquad \mathbf{M}_{\mathbf{MN}} \sim \begin{pmatrix} 1 & \epsilon & \epsilon^{2} \\ \epsilon & \epsilon^{2} & \epsilon^{3} \\ \epsilon^{2} & \epsilon^{3} & 1 \end{pmatrix} \mathbf{\Lambda}_{\mathbf{R}}$$
$$\sim \mathbf{M}_{\mathbf{D}}^{\mathbf{T}}, \qquad \mathbf{M}_{\nu} = -\mathbf{M}_{\mathbf{DN}} \mathbf{M}^{-1} \mathbf{M}_{\mathbf{DN}}^{\mathbf{T}} \sim \begin{pmatrix} \epsilon^{2} & \epsilon & \epsilon \\ \epsilon & 1 & 1 \\ \epsilon & 1 & 1 \end{pmatrix} \mathbf{v}^{2} / \mathbf{\Lambda}_{\mathbf{R}}$$

• M_U, M_{MN}, M_{ν} are symmetric, M_D, M_L, M_{DN} doubly lopsided. Note that M_{ν} has a mild hierarchy.

PHENOMENOLOGICAL FIT

- 25 leading independent prefactors + Λ_R are used to fit 30 data parameters with fixed $\epsilon = (1/6.5)^2 = 0.0237$
- Best fit obtained with Normal Hierarchy and

$$egin{aligned} &\Lambda_{\mathbf{R}} = \mathbf{M_{SU(5)}} = 7.4 imes \mathbf{10^{14}} \; \mathrm{GeV} \ & \Rightarrow \mathbf{M_{SU(12)}} = \Lambda_{\mathbf{R}}/\epsilon = \mathbf{3.1} imes \mathbf{10^{16}} \; \mathrm{GeV}, \ & \mathbf{m_1} = \mathbf{0}, & \mathbf{M_1} = \mathbf{1.67} imes \mathbf{10^{12}} \; \mathrm{GeV}, \ & \mathbf{M_2} = \mathbf{6.85} imes \mathbf{10^{13}} \; \mathrm{GeV}, \ & \mathbf{M_3} = \mathbf{5.30} imes \mathbf{10^{14}} \; \mathrm{GeV} \end{aligned}$$

MATRICES GIVING BEST FIT

$$M_{\rm U} = \begin{pmatrix} -1.1\varepsilon^4 & 7.1\varepsilon^3 & 5.6\varepsilon^2 \\ 7.1\varepsilon^3 & -6.2\varepsilon^2 & -0.10\varepsilon \\ 5.6\varepsilon^2 & -0.10\varepsilon & -0.95 \end{pmatrix} v, \qquad M_{\rm D} = \begin{pmatrix} -6.3\varepsilon^4 & 8.0\varepsilon^3 & -1.9\varepsilon^3 \\ -4.5\varepsilon^3 & 0.38\varepsilon^2 & -1.3\varepsilon^2 \\ 0.88\varepsilon^2 & -0.23\varepsilon & -0.51\varepsilon \end{pmatrix} v,
M_{\rm DN} = \begin{pmatrix} h_{11}^{\rm dn}\varepsilon^3 & 0.21\varepsilon^2 & -2.7\varepsilon \\ h_{21}^{\rm dn}\varepsilon^2 & -0.28\varepsilon & -0.15 \\ h_{31}^{\rm dn}\varepsilon^2 & 2.1\varepsilon & 0.086 \end{pmatrix} v, \qquad M_{\rm MN} = \begin{pmatrix} -0.72 & -1.5\varepsilon & h_{13}^{\rm mn}\varepsilon^2 \\ -1.5\varepsilon & 0.95\varepsilon^2 & h_{23}^{\rm mn}\varepsilon^3 \\ h_{13}^{\rm mn}\varepsilon^2 & h_{23}^{\rm mn}\varepsilon^3 & 0.093 \end{pmatrix} \Lambda_{\rm R}
M_{\nu} = \begin{pmatrix} -81.\varepsilon^2 & -4.3\varepsilon & 2.4\varepsilon \\ -4.3\varepsilon & -0.25 & 0.28 \\ 2.4\varepsilon & 0.28 & -1.1 \end{pmatrix} \frac{v^2}{\Lambda_{\rm R}},$$

• All prefactors except one are within
$$\mathcal{O}(\mathbf{0.1} - \mathbf{10})$$
 of unity.

CETUP Workshop C. H. Albright An Explicit SU(12) Family and Flavor Unification Model 9

SUMMARY

- Unified SU(12) SUSY GUT model obtained by brute force computer scan over all SU(12) anomaly-free sets of IRs containing 3 SU(5) chiral families under the assumption that SU(12) → SU(5) → SM, looping over all SU(12) fermion and Higgs assignments that give good fits to the input data.
- For this purpose an effective theory approach was used to determine leading order tree-level diagrams for dim-(4+n) matrix elements in powers of eⁿ where epsilon is the ratio of the SU(5) to SU(12) scale. Best fit obtained by requiring all prefactors be O(1), but large number of them implies few predictions.
- This model is just one of many possibilities (including other smaller SU(N) groups), but its features were among most attractive found.
- Model serves as an existence proof for unification of family and flavor.