Light neutralino dark matter in MSSM

Nazila Mahmoudi CERN TH & LPC Clermont-Ferrand (France)

In collaboration with A. Arbey and M. Battaglia

36th International Conference on High Energy Physics

4 - 11 July 2012 Melbourne Convention and Exhibition Centre

Status of Dark Matter Direct Detection

CRESST, Eur.Phys.J. C72 (2012) 1971

The constrained MSSM scenarios provide no candidate "compatible" with DAMA, CoGeNT, CRESST and XENON data

pMSSM scans

Flat scans over the pMSSM 19 parameters.

Using many codes: SuperIso Relic, SoftSusy, FeynHiggs, Hdecay, Sdecay, Higgsbounds, Micromegas, Prospino, Pythia and Delphes, with SuperIso as the central core.

$2.16 \times 10^{-4} < {\sf BR}(B \to X_s \gamma) < 4.93 \times 10^{-4}$
$BR(B_s ightarrow \mu^+ \mu^-) < 5.0 imes 10^{-9}$
0.56 < R(B o au u) < 2.70
$4.7 imes 10^{-2} < {\sf BR}(D_s o au u) < 6.1 imes 10^{-2}$
$2.9 \times 10^{-3} < BR(B \rightarrow D^{0} \tau \nu) < 14.2 \times 10^{-3}$
$0.985 < R_{\mu 23}(K \rightarrow \mu \nu) < 1.013$
$-2.4 imes 10^{-9} < \delta a_{\mu} < 4.5 imes 10^{-9}$
+ sparticle mass lower bounds
+ Higgs search limits
122.5 GeV $< M_h <$ 127.5 GeV
+ neutralino LSP
Loose WMAP limits: $10^{-4} < \Omega_{\chi} h^2 < 0.155$
Tight WMAP limits: $0.068 < \Omega_{\chi} h^2 < 0.155$

Particle	Limits	Conditions
\tilde{v}_{2}^{0}	62.4	$\tan \beta < 40$
X2 X3	99.9	$\tan \beta < 40$
$\tilde{\chi}_4^0$	116	$\tan \beta < 40$
$\tilde{\chi}_1^{\pm}$	92.4	$m_{\overline{v}^{\pm}} - m_{\overline{v}^{2}} < 4 \text{ GeV}$
	103.5	$m_{\tilde{\chi}_{1}^{\pm}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2} > 4 \text{ GeV}$
ẽ _R	73	
ē _L	107	
$\tilde{\tau}_1$	81.9	$m_{\tilde{\tau}_1} - m_{\tilde{\chi}_1^0} > 15 \text{ GeV}$
ŨR	100	$m_{\tilde{u}_R} - m_{\tilde{\chi}_1^0} > 10 \text{ GeV}$
ũL	100	$m_{\tilde{u}_{L}} - m_{\tilde{\chi}_{1}^{0}} > 10 \text{ GeV}$
t ₁	95.7	$m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} > 10 \text{ GeV}$
d _R	100	$m_{\tilde{d}_R} - m_{\tilde{\chi}_1^0} > 10 \text{ GeV}$
dL	100	$m_{\tilde{d}_{L}} - m_{\tilde{\chi}_{1}^{0}} > 10 \text{ GeV}$
	248	$m_{\tilde{\chi}_{1}^{0}} < 70 \text{ GeV}, m_{\tilde{b}_{1}} - m_{\tilde{\chi}_{1}^{0}} > 30 \text{ GeV}$
	220	$m_{\tilde{\chi}_{1}^{0}} < 80 \text{ GeV}, m_{\tilde{b}_{1}} - m_{\tilde{\chi}_{1}^{0}} > 30 \text{ GeV}$
\tilde{b}_1	210	$m_{\bar{\chi}^0} < 100 \text{ GeV}, \ m_{\tilde{h}_1} - m_{\bar{\chi}^0} > 30 \text{ GeV}$
	200	$m_{\tilde{\chi}^0} < 105 \text{ GeV}, m_{\tilde{b}_1} - m_{\tilde{\chi}^0} > 30 \text{ GeV}$
	100	$m_{\tilde{b}_1} - m_{\tilde{\chi}_1^0} > 5 \text{ GeV}$
ğ	195	

Details of the scans and results can be found in:

A. Arbey, M. Battaglia, F. Mahmoudi, Eur.Phys.J. C72 (2012) 1847 A. Arbey, M. Battaglia, F. Mahmoudi, Eur.Phys.J. C72 (2012) 1906

Nazila Mahmoudi

General scans in pMSSM: more than 60M generated points

Parameter	Range
tan β	[1, 60]
M _A	[50, 2000]
M1	[-2500, 2500]
M ₂	[-2500, 2500]
M ₃	[50, 2500]
$A_d = A_s = A_b$	[-10000, 10000]
$A_u = A_c = A_t$	[-10000, 10000]
$A_e = A_\mu = A_\tau$	[-10000, 10000]
μ	[-3000, 3000]
$M_{\tilde{e}_L} = M_{\tilde{\mu}_L}$	[50, 2500]
$M_{\tilde{e}_R} = M_{\tilde{\mu}_R}$	[50, 2500]
M _ĩ	[50, 2500]
M _{~~R}	[50, 2500]
$M_{\tilde{q}_{1L}} = M_{\tilde{q}_{2L}}$	[50, 2500]
M _{q̃3L}	[50, 2500]
$M_{\tilde{u}_R} = M_{\tilde{c}_R}$	[50, 2500]
Mĩ _R	[50, 2500]
$M_{\tilde{d}_R} = M_{\tilde{s}_R}$	[50, 2500]
M _{ĎP}	[50, 2500]

Nazila Mahmoudi

pMSSM points and XENON dark matter exclusion limit

A. Arbey, M. Battaglia, F. Mahmoudi, Eur.Phys.J. C72 (2012) 1847

About 20% of the points are excluded by XENON-100

Nazila Mahmoudi

ICHEP 2012, July 7th, 2012

Low-mass neutralino scans

Parameter	Range
$\tan \beta$	[1, 60]
M _A	[50, 2000]
M1	[-300, 300]
M2	[-650, 650]
M ₃	[0, 2500]
$A_d = A_s = A_b$	[-10000, 10000]
$A_u = A_c = A_t$	[-10000, 10000]
$A_e = A_\mu = A_\tau$	[-10000, 10000]
μ	[-3000, 3000]
$M_{\tilde{e}_L} = M_{\tilde{\mu}_L}$	[0, 2500]
$M_{\tilde{e}_R} = M_{\tilde{\mu}_R}$	[0, 2500]
Μ _{τ̃}	[0, 2500]
M _Ť _R	[0, 2500]
$M_{\tilde{q}_{1L}} = M_{\tilde{q}_{2L}}$	[0, 2500]
M _{q̃3L}	[0, 2500]
$M_{\tilde{u}_R} = M_{\tilde{c}_R}$	[0, 2500]
Mĩ _R	[0, 2500]
$M_{\tilde{d}_R} = M_{\tilde{s}_R}$	[0, 2500]
M _{ĎP}	[0, 2500]

Nazila Mahmoudi

Low mass neutralino scans: more than one billion generated points

Selection	pMSSM points
Valid points with light χ_1^0 , large $\sigma(\chi - p)$	1 M

A. Arbey, M. Battaglia, F. Mahmoudi, arXiv:1205.2557 [hep-ph]

Nazila Mahmoudi

ICHEP 2012, July 7th, 2012

Low mass neutralino scans: more than one billion generated points

Selection	pMSSM points
Valid points with light χ_{1}^{0} , large $\sigma(\chi - p)$	1 M
Monojet searches	280 k

A. Arbey, M. Battaglia, F. Mahmoudi, arXiv:1205.2557 [hep-ph]

ICHEP 2012, July 7th, 2012

Low mass neutralino scans: more than one billion generated points

Selection	pMSSM
	points
Valid points with	1 M
light χ_1^0 , large $\sigma(\chi - p)$	
Monojet searches	280 k
SUSY searches	90 k

Low mass neutralino scans: more than one billion generated points

Selection	pMSSM points
Valid points with light χ_{1}^{0} , large $\sigma(\chi - p)$	1 M
Monojet searches	280 k
SUSY searches	90 k
LEP searches	50 k

A. Arbey, M. Battaglia, F. Mahmoudi, arXiv:1205.2557 [hep-ph]

Nazila Mahmoudi

ICHEP 2012, July 7th, 2012

Low mass neutralino scans: more than one billion generated points

Selection	pMSSM
	points
Valid points with	1 M
light χ_1^0 , large $\sigma(\chi - p)$	
Monojet searches	280 k
SUSY searches	90 k
LEP searches	50 k
Flavour physics	20 k

Low mass neutralino scans: more than one billion generated points

Selection	pMSSM points
Valid points with	1 M
light χ_1^{0} , large $\sigma(\chi - p)$	
Monojet searches	280 k
SUSY searches	90 k
LEP searches	50 k
Flavour physics	20 k
Higgs searches	10 k

Low mass neutralino scans: more than one billion generated points

Selection	pMSSM points
Valid points with light χ^0 large $\sigma(\chi - p)$	1 M
Monojet searches	280 k
SUSY searches LEP searches	90 k 50 k
Flavour physics	20 k
Higgs searches	10 k
Loose WMAP limit	20

Low mass neutralino scans: more than one billion generated points

Selection	pMSSM
	points
Valid points with	1 M
light χ_{1}^{0} , large $\sigma(\chi - p)$	
Monojet searches	280 k
SUSY searches	90 k
LEP searches	50 k
Flavour physics	20 k
Higgs searches	10 k
Loose WMAP limit	20
Tight WMAP limit	5

A. Arbey, M. Battaglia, F. Mahmoudi, arXiv:1205.2557 [hep-ph]

Nazila Mahmoudi

ICHEP 2012, July 7th, 2012

Difficult to have right amount of relic density and large scattering cross section!

A. Arbey, M. Battaglia, F. Mahmoudi, arXiv:1205.2557 [hep-ph]

Three main classes of surviving models:

- sleptons with mass close to the LEP limit $(M_{\tilde{\chi}^0} \sim 20 40 \text{ GeV})$
- compressed spectra in the neutralino/chargino sector $(M_{\tilde{\chi}^0} \sim 10 40 \text{ GeV}, \ \sigma \sim 10^{-6} \text{ pb})$
- squarks quasi-degenerate with neutralino $(M_{\tilde{\chi}^0} \lesssim 10-20 \text{ GeV}, \ \sigma \sim 10^{-4} \text{ pb})$

Slepton with a mass at the LEP limit

A relatively standard scenario, but the neutralino mass has to be larger (around 30 GeV) to give a large scattering cross-section.

Compressed spectrum in the neutralino/chargino sector

This scenario may be very interesting ...

Unfortunately $\sigma(e^+e^- \to \chi_1^0 \chi_2^0)$ is in general too large and ruled out by the LEP limits!

This scenario may be very interesting...

Unfortunately $\sigma(e^+e^- \rightarrow \chi_1^0 \chi_2^0)$ is in general too large and ruled out by the LEP limits!

One squark quasi-degenerate with the neutralino

These spectra can fulfill all the constraints and have simultaneously a neutralino mass below 15 GeV and a large scattering cross-section!

Two problems however: $\Gamma(Z o \tilde{q}\tilde{q})$ is very large and $BR(h^0 o \tilde{q}\tilde{\bar{q}})$ is the dominant Higgs BR... for the first and second generations!

Light sbottoms can pass all these constraints!

Nazila Mahmoudi

One squark quasi-degenerate with the neutralino

These spectra can fulfill all the constraints and have simultaneously a neutralino mass below 15 GeV and a large scattering cross-section!

Two problems however: $\Gamma(Z \to \tilde{q}\tilde{\tilde{q}})$ is very large and $BR(h^0 \to \tilde{q}\tilde{\tilde{q}})$ is the dominant Higgs BR... for the first and second generations!

Light sbottoms can pass all these constraints!

One squark quasi-degenerate with the neutralino

These spectra can fulfill all the constraints and have simultaneously a neutralino mass below 15 GeV and a large scattering cross-section!

Two problems however: $\Gamma(Z \to \tilde{q}\tilde{\tilde{q}})$ is very large and $BR(h^0 \to \tilde{q}\tilde{\tilde{q}})$ is the dominant Higgs BR... for the first and second generations!

 \rightarrow Light sbottoms can pass all these constraints!

Using dedicated scans starting from our benchmark points:

Loose relic density constraint $10^{-4} < \Omega_\chi h^2 < 0.155$

Using dedicated scans starting from our benchmark points:

Tight relic density constraint $0.068 < \Omega_{\chi} h^2 < 0.155$

The surviving models satisfy also the indirect dark matter constraint from Frmi-LAT!

Using dedicated scans starting from our benchmark points:

pMSSM light neutralino CAN be compatible with all constraints!

Three different scenarios

- Sbottoms quasi-degenerate with the neutralino
- Sleptons with a mass close to the LEP limit
- Compressed spectra in the gaugino sector

Next steps

- Characterise more these scenarios in terms of the ATLAS and CMS MET analyses
- Go to alternative scenarios (gravitino dark matter, beyond MSSM, ...)

