S. Di Domizio University and INFN Genova

5

on behalf of the CUORE collaboration

JULY 2012

ICHEP 2012 MELBOURNE

Status of the CUORE experiment at Gran Sasso

INFN

Double beta decay

- Rare nuclear decay: (A, Z) \rightarrow (A, Z+2) + 2e⁻ (+2 \overline{v}_e)
- Occurs on nuclei with an even number of protons and neutrons where single beta decay is energetically forbidden

- Allowed by the standard model
- Rarest decay ever observed
- $T_{1/2} \sim 10^{19} 10^{21} \text{ yrs}$

- Forbidden by the standard model: ΔL = 2
- Never observed
- $T_{1/2} > 10^{22} 10^{25}$ yrs

Observation of 0vDBD would prove that neutrino is a Majorana particle

S. Di Domizio 2 ICHEP 2012

Signature and sensitivity

- Detect the two emitted electrons
- Q-value of the order of few MeV
- 2vDBD: continuous spectrum
- 0vDBD: monochromatic peak

Sensitivity: half life corresponding to the minimum number of detectable signal events above background at a given C.L.

Signature and sensitivity

- Detect the two emitted electrons
- Q-value of the order of few MeV
- 2vDBD: continuous spectrum
- 0vDBD: monochromatic peak

Sensitivity: half life corresponding to the minimum number of detectable signal events above background at a given C.L.

CUORE collaboration

- INFN LNGS Laboratories
- INFN & University Milano Bicocca
- INFN Roma & Sapienza University
- INFN Roma Tor Vergata
- INFN & University Genova
- INFN & University Firenze
- INFN LNL Laboratories
- INFN LNF Laboratories
- INFN Padova
- INFN and University Bologna

- Lawrence Berkeley National Laboratory
- Lawrence Livermore National Laboratory
- University of California Berkeley
- University of Califoria Los Angeles
- University of South Carolina
- California Politechnic state University
- University of Wisconsin Madison
- CNRS CSNSM Orsay
- Shanghai Institute of Applied Physics
- University of Zaragoza

6

ICHEP 2012

CUORE: a Cryogenic Underground Observatory for Rare Events

- Tightly packed array of TeO₂ bolometers
- DBD isotope: ¹³⁰Te
- Single bolometer mass: 0.75 kg
- Arranged in 19 towers
- Total mass: 741 kg
- ¹³⁰Te mass: 200 kg
- Energy resolution: 5 keV FWHM
- bkg goal: 0.01 counts/(keV kg y)
- Sensitivity after 5 yrs: $T_{1/2} > 1.6 \times 10^{26}$ yrs
- $m_{\beta\beta} < 40 94 \text{ meV}$
- Data taking will start in 2014

CUORE: a Cryogenic Underground Observatory for Rare Events

ICHEP 2012

- Tightly packed array of TeO₂ bolometers
- DBD isotope: ¹³⁰Te
- Single bolometer mass: 0.75 kg
- Arranged in 19 towers
- Total mass: 741 kg
- ¹³⁰Te mass: 200 kg
- Energy resolution: 5 keV FWHM
- bkg goal: 0.01 counts/(keV kg y)
- Sensitivity after 5 yrs: $T_{1/2} > 1.6 \times 10^{26}$ yrs
- $m_{_{\beta\beta}} < 40 94 \text{ meV}$
- Data taking will start in 2014

Experiment location

Hall A: CUORE

Hall A: CUORICINO

Hall C: R&D cryostat

Laboratori Nazionali del Gran Sasso of INFN, Italy

3650 m w.e. Shield against cosmic rays
2.6 x 10⁻⁸ μ/cm²/s – flux reduced by ~ 10⁶ wrt earth surface

Isotope choice: ¹³⁰Te

0.0

⁴⁸Ca

⁷⁶Ge

⁸²Se

⁹⁶Zr

 100 Mo 116 Cd 124 Sn 128 Te 130 Te 136 Xe 150 Nd

S. Di Domizio 10 ICHEP 2012

Bolometers

Energy releases produce a measurable temperature rise of the absorber crystal: $\Delta T = \frac{L}{C}$

Working temperature: ~ 10 mK

- Absorber
 - M ~ 0.75 kg
 - C ~ 10⁻⁹ J/K
 - $\Delta T/\Delta E \sim 100 \ \mu K/MeV$
- Sensor
 - R = R0 exp[$(T_0/T)^{1/2}$]
 - R ~ 100 MΩ
 - $\Delta R/\Delta E \sim 3 M\Omega/MeV$
- Output signal
 - $\Delta V/\Delta E \sim 100 \ \mu V/MeV$
 - Signal bandwidth ~ 12 Hz

11

• Signal duration ~ 5s

S. Di Domizio ICHEP 2012

The past: CUORICINO

S. Di Domizio

ICHEP 2012

- 62 TeO₂ bolometers
- 40.7 kg (11.3 kg in ¹³⁰Te)
- Data taking: 2003-2008

• Statistics: 19.75 kg x yr in ¹³⁰Te

- Avg resolution: 6.3 keV FWHM
- Bkg in ROI: 0.17 counts/(keV kg yr)

 $m_{\beta\beta} < 0.30 \div 0.71 \, eV$ range due to different NME calculations

• Internal and external lead shield

- Borated polyethylene shield
- Anti-Rn box

CUORICINO background

S. Di Domizio ICHEP 2012

Main background contributions at $Q_{_{BB}}$

- •Multi-Compton from ²⁰⁸Tl (²³²Th cont. in cryostat shields): (30±10)%
- •Degraded alphas from crystal surfaces: (10±5)%
- •Degraded alphas from Cu holders surfaces: (50±20)%

Surface alphas produce a continuous spectrum that extends down to $\mathsf{Q}_{\beta\beta}$

Contributions of copper and crystal contaminations can be disentangled

The key point is material cleanliness

- Dedicated tests in the Hall C R&D facility
- crystal contribution now under control
- copper contribution is still 4x above the CUORE goal -- 10⁻² cts/(keV kg y)

From CUORICINO to CUORE

CUORE-0

ICHEP 2012

CUORE-0

- A single CUORE-like tower installed in the CUORICINO cryostat
- Test of the detector assembly procedure
- High statistics test of the uniformity in the bolometers response
- High statistics test of the background reduction achieved
- Will improve the the CUORICINO limit by a factor 2 in 2 years of data taking
- Data taking will start at the end of July

CUORE-0 sensitivity

- Expected bkg: 0.05 0.11 counts/(keV kg yr)
- Background limited by contaminations in the cryogenic apparatus
- If bkg will be 0.05 counts/(keV kg yr), after 2 years of data taking:
 - T_{1/2} : 5.9 x 10²⁴ @90% CL
 - $m_{_{\beta\beta}} < 0.17 0.39 \text{ eV}$

S. Di Domizio 16 ICHEP 2012

CUORE-0 construction

Standardized detector assembly procedure

- Handle a large number of detectors
- Improve reproducibility
- Ensure cleanliness

3 main steps

- Sensor gluing
- Tower assembly
- Bonding of sensor wires

S. Di Domizio ICHEP 2012

CUORE cryogenic apparatus

S. Di Domizio

CUORE status

- Crystal delivery complete by the end of 2012
 - 90% already delivered @LNGS
 - 4 crystals from each batch undergo bolometric tests of contract specifications: <u>Joirnal of Crystal Growth 312 (2010) 2999</u>, <u>Astropart. Phys 35 (2012) 839-849</u>
- NTD sensors delivered at the beginning of 2013
- Cleaned Cu parts will delivered by the end of 2013
- Cryostat commissioning will start this summer
- Detector assembly: early 2014
- Detector insertion: summer 2014
- Cool down: autumn 2014

S. Di Domizio ICHEP 2012

Conclusions

20

ICHEP 2012

- CUORE will start probing the inverted hierarchy region of the Majorana neutrino mass
- The experimental technique was proved by CUORICINO
- The procedure for assembling the CUORE towers is proved by the successful construction of CUORE-0
- CUORE-0 data taking will start in summer 2012
- CUORE data taking will start in 2014