Borexino Collaboration

Kurchatov Institute (Russia)
Dubna JINR (Russia)

Jagiellonian U. Cracow (Poland)

Heidelberg (Germany)

Munich (Germany)

Genova

Perugia

Princeton University

Virginia Tech. University

APC Paris

Milano

ICHEP 2012, Melbourne, 4-11 July 2012

Livia Ludhova (Borexino collaboration)
Neutrinos & Nuclear reactions in the Sun

PP cycle… 99% of energy

- $p + p \rightarrow ^2\text{H} + e^+ + \nu_e$ (99.77%)
- $p + ^2\text{H} \rightarrow ^3\text{He} + \gamma$ (84.7%)
- $^3\text{He} + ^3\text{He} \rightarrow ^4\text{He} + 2p$ (13.8%)
- $^7\text{Be} + e^- \rightarrow ^7\text{Li} + \nu_e$ (13.78%)
- $^7\text{Li} + p \rightarrow ^4\text{He} + ^4\text{He}$ (0.02%)

CNO cycle… <1% of energy

- $p + e^- + p \rightarrow ^2\text{H} + \nu_e$ (0.23%)
- $^3\text{He} + ^4\text{He} \rightarrow ^7\text{Be} + \gamma$ (2\times10^{-5}%)
- $^7\text{Be} + p \rightarrow ^8\text{Be} + e^+ + \nu_e$ (13.8%)
- $^8\text{Be} \rightarrow ^7\text{Be} + e^+ + \nu_e$ (0.02%)
- $^8\text{Be} \rightarrow ^4\text{He} + ^4\text{He}$ (0.23%)

Poorly known

- Not directly measured

Livia Ludhova (Borexino collaboration)
Solar-neutrino energy spectrum

Borexino energy threshold

previous real-time measurements
(SNO, SuperKamiokande)
Čerenkov radiation
< 1/10,000 of the total solar neutrino flux

Solar-neutrino energy spectrum

ICHEP 2012, Melbourne, 4-11 July 2012
Livia Ludhova (Borexino collaboration)
What can we learn from solar neutrinos (1)?

Astrophysics: resolving “metallicity problem”

New 3D Standard Solar Models -> lower metallicity -> discrepancy with helioseismology… where is the problem?

<table>
<thead>
<tr>
<th>Sources</th>
<th>(\Phi(\nu \text{ sec}^{-1} \text{ cm}^{-2})) high-metallicity</th>
<th>(\Phi(\nu \text{ sec}^{-1} \text{ cm}^{-2})) low-metallicity</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>((5.98(1\pm0.006)\times10^{10}))</td>
<td>((6.03(1\pm0.006)\times10^{10}))</td>
<td>0.8%</td>
</tr>
<tr>
<td>pep</td>
<td>((1.44(1\pm0.012)\times10^{8}))</td>
<td>((1.47(1\pm0.012)\times10^{8}))</td>
<td>2.0%</td>
</tr>
<tr>
<td>hep</td>
<td>((8.04(1\pm0.300)\times10^{3}))</td>
<td>((8.31(1\pm0.300)\times10^{3}))</td>
<td>3.3%</td>
</tr>
<tr>
<td>(^7\text{Be})</td>
<td>((5.00(1\pm0.070)\times10^{9}))</td>
<td>((4.56(1\pm0.070)\times10^{9}))</td>
<td>9.4%</td>
</tr>
<tr>
<td>(^8\text{B})</td>
<td>((5.58(1\pm0.140)\times10^{6}))</td>
<td>((4.59(1\pm0.140)\times10^{6}))</td>
<td>19.8%</td>
</tr>
<tr>
<td>(^{13}\text{N})</td>
<td>((2.96(1\pm0.140)\times10^{8}))</td>
<td>((2.17(1\pm0.140)\times10^{8}))</td>
<td>31.6%</td>
</tr>
<tr>
<td>(^{15}\text{O})</td>
<td>((2.23(1\pm0.150)\times10^{8}))</td>
<td>((1.56(1\pm0.150)\times10^{8}))</td>
<td>33.5%</td>
</tr>
<tr>
<td>(^{17}\text{F})</td>
<td>((5.52(1\pm0.170)\times10^{6}))</td>
<td>((3.40(1\pm0.160)\times10^{6}))</td>
<td>53.0%</td>
</tr>
</tbody>
</table>

Solar neutrino fluxes depend on metallicity!

- High metallicity GS98 = Grevesse et al. S. Sci. Rev. 85,161 (‘98);
What can we learn from solar neutrinos (2) ?

Neutrino Physics: precision measurement of solar ν fluxes vs survival probability P_{ee}

$P_{ee} = \text{electron neutrino survival probability from the Sun's core to the detector}$

Vacuum regime

Low energy neutrinos:
flavor change dominated by vacuum oscillations;

Matter regime

High energy neutrinos:
Resonant oscillations in matter (MSW effect):
Effective electron neutrino mass is increased due to the charge current interactions with electrons of the Sun

Transition region:
Decrease of the ν_e survival probability (P_{ee})
What can we learn from solar neutrinos (2) ?

Neutrino Physics: precision measurement of solar ν fluxes vs survival probability P_{ee}

Low energy neutrinos:
flavor change dominated by vacuum oscillations;

High energy neutrinos:
Resonant oscillations in matter (MSW effect):
Effective electron neutrino mass is increased due to the charge current interactions with electrons of the Sun

Transition region:
Decrease of the ν_e survival probability (P_{ee})
Borexino experimental site

Borexino is located at the Laboratori Nazionali del Gran Sasso, near L’Aquila, cca.120 km from Rome in Italy, shielded by 1400 m of limestone rocks (3800 m water equivalent)

Scintillator:
270 t PC+PPO (1.5 g/l) in a 150 μm thick inner nylon vessel (R = 4.25 m)

Buffer region:
PC+DMP quencher (5 g/l) 4.25 m < R < 6.75 m

Outer nylon vessel:
R = 5.50 m (222Rn barrier)

Water Tank:
γ & neutron shield μ Water Čerenkov detector 208 PMTs in water 2100 m³

Stainless Steel Sphere:
R = 6.75 m 2212 PMTs 1350 m³

Carbon steel plates

20 steel legs

ICHEP 2012, Melbourne, 4-11 July 2012
Livia Ludhova (Borexino collaboration)
Detection principle

- Neutrino elastic scattering on electrons of liquid scintillator: \(e^- + \nu \rightarrow e^- + \nu \);
- Scattered electrons cause the scintillation light production;
- **Advantages:**
 - Low energy threshold (~ 0.2 MeV);
 - High light yield and a good energy resolution;
 - Good position reconstruction;
- **Drawbacks:**
 - Info about the \(\nu \) directionality is lost;
 - \(\nu \)-induced events can’t be distinguished from the events of \(\beta/\gamma \) natural radioactivity;

End October 2006
March 2007
May 2007

ICHEP 2012, Melbourne, 4-11 July 2012
Livia Ludhova (Borexino collaboration)
Neutrino elastic scattering on electrons of liquid scintillator: \(e^- + \nu \rightarrow e^- + \nu \);

Scattered electrons cause the scintillation light production;

Advantages:
- Low energy threshold (~ 0.2 MeV);
- High light yield and a good energy resolution;
- Good position reconstruction;

Drawbacks:
- Info about the \(\nu \) directionality is lost;
- \(\nu \)-induced events can’t be distinguished from the events of \(\beta/\gamma \) natural radioactivity;

Detection principle

\[
\text{# of photons} \rightarrow \text{energy} \\
\text{time of flight} \rightarrow \text{position} \\
\text{pulse shape} \rightarrow \alpha/\beta \beta^+/\beta^-
\]

ENERGY RESOLUTION
- 10% @ 200 keV
- 8% @ 400 keV
- 6% @ 1 MeV

SPATIAL RESOLUTION
- 35 cm @ 200 keV
- 16 cm @ 500 keV

Extreme radiopurity is a must for a precision spectroscopy measurement!!!

DAQ STARTS: May 2007
Calibration with radioactive sources

<table>
<thead>
<tr>
<th>Source</th>
<th>Energy (MeV)</th>
<th>γ</th>
<th>β</th>
<th>α</th>
<th>n (AmBe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>57Co</td>
<td>0.122</td>
<td>0.122</td>
<td>0.165</td>
<td>0.279</td>
<td>0.514</td>
</tr>
<tr>
<td>139Ce</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85Sr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65Zn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214Bi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214Po</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n+12C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n+Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Absolute source position: LED and CCD cameras (± 2cm);
- cca. 300 points through the whole scintillator volume;

- Detector response as a function of position;
- Fiducial volume definition and tuning of the spatial reconstruction algorithm;
- Energy scale definition
 - precise calibration in the 0-7 MeV range.
- Tuning of the full Monte Carlo simulation

SYSTEMATIC ERROR REDUCTION
For ALL SOLAR NEUTRINO RESULTS
\(^{7}\text{Be} \) neutrino (862 keV) rate @ 4.6% (SSM prediction @ 7%)

\[46.0 \pm 1.5 \text{(stat)} \pm 1.5 \text{(syst)} \]

- Spectral fit including neutrino signal + background components;
- Two independent methods: MC based and the analytical one;
- Fit with and without \(\alpha \)'s statistical subtraction;

ICHEP 2012, Melbourne, 4-11 July 2012
Implications of the 7Be measurement

- comparing to non-oscillated SSM: **no oscillation excluded @ 5.0 \(\sigma \)**
 (electron equivalent flux (862 keV line): \((2.78 \pm 0.13) \times 10^9 \text{ cm}^{-2} \text{ s}^{-1}\))

- assuming MSW-LMA: \(f (^7\text{Be}) = \text{measured flux} / \text{SSM} = 0.97 \pm 0.09 \)

- including all solar experiments + luminosity constrain:
 \[
 f_{\text{pp}} = 1.013^{+0.003}_{-0.010} \\
 f_{\text{CNO}} < 2.5 \text{ at } 95\% \text{ C.L.}
 \]

\[\text{Pee} = 0.51 \pm 0.07 \text{ at } 867 \text{ keV} \] (experiment + SSM high metallicity)

ICHEP 2012, Melbourne, 4-11 July 2012

Livia Ludhova (Borexino collaboration)
Absence of day-night asymmetry for 7Be rate (R)

- MSW: a possible regeneration of electron neutrinos in the matter (within the Earth during night): effect depends on the oscillation parameters and on energy;

$$A_{dn} = \frac{2R_N - R_D}{R_N + R_D} = \frac{R_{\text{diff}}}{\langle R \rangle}$$

- LOW prediction

- **Nigh-day spectrum**

- Regions allowed @ 68.27%, 95.45%, 99.73% CL

- $A_{dn} = 0.001 \pm 0.012(\text{stat}) \pm 0.007(\text{syst})$

- in agreement with MSW-LMA;
- LOW region excluded at > 8.5 σ with solar neutrinos only: for the first time without the use of reactor ANTIneutrinos and therefore the assumption of CPT symmetry;
- constrains non standard interacitons (MaVaN in Holanda 2009 excluded)

ICHEP 2012, Melbourne, 4-11 July 2012

Livia Ludhova (Borexino collaboration)
First observation of pep neutrinos (1442 keV)

PHYSICAL REVIEW C 74, 045805 (2006)

- Main background $^{11}\text{C} \left(e^+ \right)$ with $\tau = 29.4 \text{ min}$:
 1. Three Fold Coincidence (TFC): space-time veto removes 90% of ^{11}C payed with 50% loss of exposure
 2. b^+ / b^- pulse-shape discrimination: positronium formation + annihilation

- TEST SAMPLES

- $n + p \rightarrow D + \gamma$ (2.2 MeV)

ICHEP 2012, Melbourne, 4-11 July 2012

Livia Ludhova (Borexino collaboration)
Multivariate maximum likelihood fit

Energy spectral fit
- Spectrum of events in FV
- Spectrum after TPC veto
 - 14C rate = 27
 - 14C rate = 2.5
 - pepV rate = 3.1
 - CNOV limit = 7.9
 - 210Bi rate = 55

Pulse shape variable
- Data (0.9 - 1.8 MeV)
- $e^+: V_{S, 214}$Pb, 210Bi, External γ
- $e^+: 11^C, 15^C$
- Best Fit

Radial fit
- Data (1.2 - 2.8 MeV)
- Bulk: $V_{S, 11^C, 15^C}$
- External γ
- Best Fit

ICHEP 2012, Melbourne, 4-11 July
Livia Ludhova (Borexino collaboration)
First observation of pep neutrinos II.

- **Pep rate:** \(3.1 \pm 0.6_{\text{stat}} \pm 0.3_{\text{sys}} \text{ cpd/100 t}\)
- Assuming MSW-LMA: \(\Phi_{\text{pep}} = 1.6 \pm 0.3 \times 10^8 \text{ cm}^{-2} \text{ s}^{-1}\)
- No oscillations excluded at 97% c.l.
- Absence of pep solar ν excluded at 98%

CNO neutrinos

- only limits, correlation with \(^{210}\text{Bi}\);
- CNO limit obtained assuming pep @ SSM
- **CNO rate** < 7.1 cpd/100 t (95% c.l.)
- Assuming MSW-LMA:
 \(\Phi_{\text{CNO}} < 7.7 \times 10^8 \text{ cm}^{-2} \text{ s}^{-1}\) (95% C.L.)
 the strongest limit to date
 not sufficient to resolve metallicity problem
8B neutrino rate with 3 MeV energy threshold

lower energies limited by 208Tl

<table>
<thead>
<tr>
<th>Rate [cpd/100 t]</th>
<th>3.0–16.3 MeV</th>
<th>5.0–16.3 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi_{\text{exp}}^{\text{ES}}) ([10^6 \text{ cm}^{-2} \text{ s}^{-1}])</td>
<td>0.22 ± 0.04 ± 0.01</td>
<td>0.13 ± 0.02 ± 0.01</td>
</tr>
<tr>
<td>(\Phi_{\text{exp}}^{\text{ES}} / \Phi_{\text{th}}^{\text{ES}})</td>
<td>2.4 ± 0.4 ± 0.1</td>
<td>2.7 ± 0.4 ± 0.2</td>
</tr>
</tbody>
</table>

TABLE VI. Results on \(^8\)B solar neutrino flux from elastic scattering, normalized under the assumption of the no-oscillation scenario reported by SuperKamiokaNDE, SNO, and Borexino.

<table>
<thead>
<tr>
<th>Threshold [MeV]</th>
<th>(\Phi_{\text{ES}}^{\text{S}8\text{B}}) ([10^6 \text{ cm}^{-2} \text{ s}^{-1}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperKamiokaNDE I [3]</td>
<td>5.0</td>
</tr>
<tr>
<td>SuperKamiokaNDE II [2]</td>
<td>7.0</td>
</tr>
<tr>
<td>SNO D_2O [4]</td>
<td>5.0</td>
</tr>
<tr>
<td>SNO Salt Phase [25]</td>
<td>5.5</td>
</tr>
<tr>
<td>SNO Prop. Counter [26]</td>
<td>6.0</td>
</tr>
<tr>
<td>Borexino</td>
<td>3.0</td>
</tr>
<tr>
<td>Borexino</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Background subtracted
To conclude, we put all together..... P_{ee} after Borexino I

The diagram shows the survival probability of P_{ee} as a function of E_{ν} [MeV]. The data points are categorized into different sources:

- pp - All solar
- 7Be - Borexino
- pep - Borexino
- 8B - SNO + SK
- MSW-LMA Prediction

The MSW-LMA gets constrained....
Future and Borexino phase II

- since July 2010 we have undertaken a series of purification campaigns to decrease the radioactive background;
 - Nitrogen stripping has been successful in removing 85Kr:
 $$^{85}\text{Kr} < 8.8 \text{ cpd / 100 t} \quad (2007-2010: 31.2 \pm 5)$$
 - moderate success at removing 210Bi by water extraction:
 $$^{210}\text{Bi} : (16 \pm 4) \text{ cpd / 100 t} \quad (2007-2010: 41.0 \pm 2.8)$$
 - unprecedented purity in 238U and 232Th:
 $$^{238}\text{U} < 9.7 \times 10^{-19} \text{ g/g} \quad \text{and} \quad ^{232}\text{Th} < 2.9 \times 10^{-18} \text{ g/g}$$
 - 210Po decreasing, ~ 5 cpd / t;

- Borexino phase II just started…
 - continue solar neutrino program:
 - Improve 7Be, 8B \rightarrow test of MSW
 - Confirm pep at more than 3σ and reduce error
 - Improve upper limit on CNO \rightarrow probe metallicity
 - Attempt direct pp measurement
 - more statistics for an update of geo-neutrino measurement;
 - another long-term scientific goals under discussion.
More about Borexino solar results in:

7Be @ 5%: G. Bellini et al.: Precision measurement of the 0.862 MeV 7Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302.

Thank you!
Backup
NEuTRINO SPEED - Preliminary RESULTS

internal delay stability

MC simulation of expected width

38 events

97 events

ICHEP 2012, Melbourne, 4-11 July 2012

Livia Ludhova (Borexino collaboration)
β+ - β- discrimination

- Positrons form ortho-positronium in ~ 50% of cases (in PC)
 - Scintillation signal **delayed** by ~ 3 ns
 - Pulse shape is different
 - Parameters measured in a dedicated experiment

- A Pulse Shape discriminating variable was developed, based on a **Boosted Decision Tree (BDT)**

ICHEP 2012, Melbourne, 4-11 July 2012

Livia Ludhova (Borexino collaboration)
The internal background in Borexino

- Careful selection of the construction materials and operational procedures;
- Special procedures for fluid procurement;
- Scintillator and buffer purification during the filling;
- Sparging with high purity N2;
- More than 15 years of work…

Extreme radiopurity is a must!!!

<table>
<thead>
<tr>
<th>Background</th>
<th>Typical abundance (source)</th>
<th>Goal</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{14}\text{C}/^{12}\text{C}$</td>
<td>10^{-12} (cosmogenic) g/g</td>
<td>10^{-18} g/g</td>
<td>$\sim 2 \times 10^{-18}$ g/g</td>
</tr>
<tr>
<td>^{238}U (by ^{214}Bi-^{214}Po)</td>
<td>2×10^{-5} (dust) g/g</td>
<td>10^{-16} g/g</td>
<td>$(1.6 \pm 0.1) \times 10^{-17}$ g/g</td>
</tr>
<tr>
<td>^{232}Th (by ^{212}Bi-^{212}Po)</td>
<td>2×10^{-5} (dust) g/g</td>
<td>10^{-16} g/g</td>
<td>$(5 \pm 1) \times 10^{-18}$ g/g</td>
</tr>
<tr>
<td>^{222}Rn (by ^{214}Bi-^{214}Po)</td>
<td>100 atoms/cm3 (air) emanation from materials</td>
<td>10^{-16} g/g</td>
<td>$\sim 10^{-17}$ g/g (<1 count/day/100t)</td>
</tr>
<tr>
<td>^{210}Po</td>
<td>Surface contamination</td>
<td>~ 1 c/day/t</td>
<td>May 2007: 70 c/d/t Sep 2008: 7 c/d/t</td>
</tr>
<tr>
<td>^{40}K</td>
<td>2×10^{-6} (dust) g/g</td>
<td>$< 3 \times 10^{-18}$ (90%) g/g</td>
<td></td>
</tr>
<tr>
<td>^{85}Kr</td>
<td>1 Bq/m3 (air)</td>
<td>~ 1 c/d/100t</td>
<td>(28 ± 7) c/d/100t (fast coinc.)</td>
</tr>
<tr>
<td>^{39}Ar</td>
<td>17 mBq/m3 (air)</td>
<td>~ 1 c/d/100t</td>
<td>$<<^{85}\text{Kr}$</td>
</tr>
</tbody>
</table>
Data structure and detector performance

- Charged particles and γ produce scintillation light: photons hit inner PMTs;
- DAQ trigger: > 25 inner PMTs (from 2212) are hit within 60-95 ns:
 - 16 μs DAQ gate is opened;
 - Time and charge of each hit detected;
 - Each trigger has its GPS time;
 - “cluster” of hits = real physical event

- Outer detector gives a muon veto if at least 6 outer PMTs (from 208) fire;

Light yield: (500 ± 12) p.e./MeV taking into account quenching factor

Energy resolution (s):
- 10% @ 200 keV
- 8% @ 400 keV
- 6% @ 1000 keV

Spatial resolution:
- $35 \text{ cm} @ 200 \text{ keV}$
- $16 \text{ cm} @ 500 \text{ keV}$

Livia Ludhova (Borexino collaboration)
Muon and neutron detection

- **μ** are identified by the OD and by the ID
 - OD eff: > 99.28%
 - ID analysis based on pulse shape variables
 - Cluster mean time, peak position in time
 - **Combined overall efficiency** > 99.992%
 - After cuts, μ not a relevant background for 7Be
 - Residual background: < 1 count /day/ 100 t

New:
Muon tag with ID

- Muon track reconstruction

After each μ, 1.6 ms gate opened to detect neutrons:
- Example with several tens of neutrons.

NEW: Muon and Cosmogenic Neutron Detection in Borexino.
Sent to JINST 2 weeks ago, arXiv:1101.3101
B analysis details

External backgrounds (FV CUT):
- High energy γ from neutrons
- 214Bi and 208Tl from Rn emanated from nylon or detector

Internal radiocative backgrounds:
- 214Bi (238U chain) via 214Bi-214Po coincidences;
- 208Tl (232Th chain) from bulk: stat. subtr.;

Cosmogenic background rejection:
- **FAST COSMOGENIC CUT**: 6.5 s dead time after all ID muons to reject fast cosmogenic isotopes; (29.2 % dead time, 4300 muons/day passing ID)
- **NEUTRON REJECTION**: 2 ms after all muons (neutron capture time 256 μs, AmBe source);
- **10C SUBTRACTION**: 3-fold coincidence with parent muon and neutron;
- **11Be STATISTICAL SUBTRACTION**;

ICHEP 2012, Melbourne, 4-11 July 2012

Livia Ludhova (Borexino collaboration)
Background: 232Th and 238U content

Assuming secular equilibrium:

232Th chain

212Bi β 212Po \rightarrow α 208Pb

$\tau = 432.8$ ns

2.25 MeV ~ 800 keV eq.

(6.8 ± 1.5) \times 10^{-18} g(Th)/g

238U chain

214Bi β 214Po \rightarrow α 210Pb

$\tau = 236$ μs

3.2 MeV ~ 700 keV eq.

(1.6 ± 0.1) \times 10^{-17} g(U)/g

Only few bulk candidates

Bulk contamination

212Bi-212Po centre of mass position distribution

278 days
Background: 210Po and 85Kr

210Po: end of 238U chain:

210Po \rightarrow 210Bi \rightarrow 210Po \rightarrow 206Pb

- β^- (61 keV)
- β^- (1.2 MeV) α
- $t_{1/2} = 22.3$ y
- 5.01 d
- 138.38 d
- stable

85Kr β-decay energy spectrum similar to the 7Be recoil electron

- 85Kr β \rightarrow 85Rb
- 687 keV

- $\tau = 10.76$ y - BR: 99.56%

85Kr is studied through:

- 85Kr β \rightarrow 85mRb
- 173 keV

- 85mRb γ \rightarrow 85Rb
- 514 keV

- $\tau = 1.46$ ms - BR: 0.43%

PRELIMINARY: the 85Kr contamination \((30 \pm 5) \) counts/day/100 ton

- The bulk 238U and 232Th contamination is negligible
- The 210Po background is NOT related neither to 238U nor to 210Pb contamination
- May 2007 ~80 counts/day/ton, $\tau = 204.6$ days
- 210Bi no direct evidence --- free parameter in the total fit, cannot be disentangled, in the 7Be energy range, from the CNO

ICHEP 2012, Melbourne, 4-11 July 2012

Livia Ludhova (Borexino collaboration)