New Heavy Gauge Bosons at CMS

Claudia-Elisabeth Wulz
On behalf of the CMS Collaboration
Institute of High Energy Physics Vienna
Austrian Academy of Sciences
New heavy gauge bosons

To solve known shortcomings of the Standard Model, extensions have been proposed. The SM gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$ can be extended by:

- An extra $U(1)$ group, giving rise to a neutral heavy vector boson Z'
- An extra $SU(2)$ group, giving rise to a charged heavy vector boson W'

Model examples:
- Sequential Standard Model (SSM): new bosons have similar couplings as W, Z in SM

- Left-right symmetric models: $SU(2)_L \times SU(2)_R$

- Superstring-inspired E_6 models: $E_6 \rightarrow SO(10) \times U(1)_\psi \rightarrow SU(5) \times U(1)_\chi \times U(1)_\psi$. Only one linear combination G leads to particles at the TeV scale:
 $G = \cos \theta \ U(1)_\chi - \sin \theta \ U(1)_\psi$. $\theta = 0$: ψ-model

- More complicated scenarios predict a tower of new gauge bosons (W^n, Z^n, or gravitons G^n), such as technicolor or extra dimension models.
Many Z’ models predict narrow resonances decaying to dileptons.

Event selection:

\[E_T(e_1,e_2) > 35 \text{ GeV}, \ p_T(\mu_1,\mu_2) > 45 \text{ GeV}, \]

plus isolation criteria

Backgrounds:

- \(Z/\gamma^* , \ tt , \ tW , \ VV , \ Z \rightarrow \tau\tau , \) multijets with \(\geq 1 \) jet reconstructed as lepton
- estimated by fitting data with appropriate function

CMS PAS EXO-12-015, hep-ex 1206.1849, CMS PAS EXO-11-019
There are non-universal scenarios in which the Z' couples preferentially to third-generation fermions. Final states studied: $\tau_e \tau_\mu$, $\tau_e \tau_h$, $\tau_\mu \tau_h$, $\tau_h \tau_h$. ν's in final state do not allow to reconstruct mass of $\tau\tau$ system.

Event selection:
2 τ candidates with p_T between 15 and 35 GeV, $\eta < 2.1$, isolation criteria, no b-jets

Backgrounds:
DY $Z \rightarrow \tau\tau$, W+jets, $t\bar{t}$, VV, QCD

Backgrounds are estimated from data where possible.

Effective visible mass

$M(\text{Z'_{SSM}}) > 1.4$ TeV
$M(\text{Z'_{\psi}}) > 1.1$ TeV

hep-ex 1206.1725
submitted to PLB
CMS PAS EXO-11-031
Models studied:
- W'_SSM with SM-like couplings, with $W'_\text{SSM} \to t\bar{b}$ allowed
- Kaluza-Klein W^2_{KK} in split UED framework

Event selection: ~back-to-back isolated $l+E_T^{\text{miss}}$, energy-balanced

Backgrounds: $W \to l\nu$, QCD, tt+single top, DY,VV from data

CMS PAS EXO-12-010

M(W'_SSM) > 2.8 TeV
M(W^2_{KK}) > 1.25 TeV ($\mu = 0.05$ TeV)
M(W^2_{KK}) > 3.3 TeV ($\mu = 10$ TeV)

C.-E. Wulz
A left-handed W_L' can interfere with the W. Studies were performed with 7 TeV data. Limits for a W_R' have also been derived.

Theoretical Cross Section SSM W' with K-factor
Theoretical Cross Section SSM W' without K-factor
Theoretical Cross Section for W_R ($\sigma \times B$)

$\int L dt = 5.0 \, \text{fb}^{-1}$

CMS Simulation

CMS = 7 TeV

95% Observed Limit (Electron)
95% Observed Limit (Muon)
95% Expected (Combined)
95% Observed (Combined)

$M(W'_{SSM}) > 2.5 \, \text{TeV}$
$M(W_L'_{SSM}) > 2.63 \, \text{TeV}$ (constructive interference)
$M(W_L'_{SSM}) > 2.43 \, \text{TeV}$ (destructive interference)
$W' \rightarrow tb$

- W'_R decays to leptons suppressed if $M(\nu_R) > M(W') \rightarrow$ search in hadronic final states important. Decay chain: $W' \rightarrow tb \rightarrow Wbb \rightarrow l\nu bb$.

Event selection: $\text{isol.e}(\mu)$ with $p_T > 35(32)$ GeV, $E_T^{\text{jet1(jet2)}} > 100(40)$ GeV, ≥ 1 b-tag

Backgrounds: $t\bar{t}$+single top, $W(\rightarrow l\nu)+$jets, $Z/\gamma^* (\rightarrow ll)+$jets, QCD, VV

New BDT analysis for signal/background discrimination with ~ 50 variables (object and event kinematics, top reconstruction, angular correlations).

![Comparison of BDT and invariant mass analyses](image)
$W' \rightarrow tb$

Most general model-independent LO Lagrangian for a W' coupling to SM fermions:

$$\mathcal{L} = \frac{V_{fi}V_{fj}}{2\sqrt{2}} g_w \bar{f}_i \gamma_\mu (a_{fi}^R (1 + \gamma^5) + a_{fi}^L (1 - \gamma^5)) W'^\mu f_j + h.c.$$

$$a_{ud}^L = a_{cs}^L = a_{tb}^L = a^{L,R}$$

Mass limit and constraints of W'

gauge coupling for a set of left- and

right-handed coupling combinations

have been set:

$M(W'_R) > 1.85$ TeV

Contours of W' mass at which the

observed 95% CL cross-section upper limit equals the predicted cross-section

C.-E. Wulz

C.-E. Wulz

ICHEN, July 2012
$W' \rightarrow td$

- Tevtron measurement of forward-backward asymmetry at high $t\bar{t}$ inv. mass

\[A_{FB}^t = \frac{N_t(\eta \geq 0) - N_t(\eta \leq 0)}{N_t(\eta \geq 0) + N_t(\eta \leq 0)} \]

- Possible explanation: light W'

- $N(W'^-) > N(W'^+)$ at LHC -> aids in reconstructing the W'

Decay chain:

$pp \rightarrow tW' \rightarrow ttd$, with semileptonic t-decays plus a jet in final state.

Difference of yields for t^-d and t^+d invariant mass distributions (charge assignment from leptonic top decay):

hep-ex 1206.3921, CMS PAS EXO-11-056
$W' \rightarrow td$

CMS 5.0 fb$^{-1}$ at $\sqrt{s} = 7$ TeV

- Combined $e^+\mu$ channels
- Theory cross section (arXiv:1111.5857)
- Observed limit
- Median expected limit
- $\pm 1\sigma$ expected limit band
- $\pm 2\sigma$ expected limit band

$M(W') > 839$ GeV
W', G_{RS} \rightarrow VZ \rightarrow wide jet + lepton pair

W'_{SSM} \rightarrow ZW \rightarrow lljj, G_{RS} \rightarrow ZZ \rightarrow lljj
• 2-fermion systems boosted for heavy resonance

Event selection:
based on high-p_T Z candidates from lepton pair and wide jet well separated from leptons

Backgrounds: from data
W+jets, tt, γV+jets, Z/γ*+jets, ZZ, VV+jets

CMS PAS EXO-11-081

95% CL exclusion limits
• CMS has studied scenarios for new heavy gauge bosons.

• Although no signals for new physics have been found yet, limits on masses and other quantities have been set.

• Details may be found here:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

We are looking forward to more LHC data!