New Heavy Gauge Bosons at CMS

Claudia-Elisabeth Wulz On behalf of the CMS Collaboration Institute of High Energy Physics Vienna Austrian Academy of Sciences

36th International Conference on High Energy Physics

7 July 2012

New heavy gauge bosons

To solve known shortcomings of the Standard Model, extensions have been proposed. The SM gauge group $SU(3)_C xSU(2)_L xU(1)_Y$ can be extended by:

- An extra U(1) group, giving rise to a neutral heavy vector boson Z'
- An extra SU(2) group, giving rise to a charged heavy vector boson W'

Model examples:

- Sequential Standard Model (SSM): new bosons have similar couplings as W, Z in SM $\,$

- Left-right symmetric models: SU(2)_LxSU(2)_R

- Superstring-inspired E_6 models: $E_6 \rightarrow SO(10)xU(1)_{\psi} \rightarrow SU(5)xU(1)_{\chi}xU(1)_{\psi}$. Only one linear combination *G* leads to particles at the TeV scale: $G = \cos\theta U(1)_{\chi} - \sin\theta U(1)_{\psi}$. $\theta = 0$: ψ -model

- More complicated scenarios predict a tower of new gauge bosons (Wⁿ, Zⁿ, or gravitons Gⁿ), such as technicolor or extra dimension models.

$Z' \rightarrow l^+l^- (l = e, \mu)$

Many Z' models predict narrow resonances decaying to dileptons. Event selection:

- $E_T(e_1,e_2) > 35$ GeV, $p_T(\mu_1,\mu_2) > 45$ GeV, plus isolation criteria Backgrounds:
- Z/ γ^* , tt, tW, VV, Z $\rightarrow \tau \tau$, multijets with ≥ 1 jet reconstructed as lepton
- estimated by fitting data with appropriate function

There are non-universal scenarios in which the Z' couples preferentially generation fermions. Final states studied: $\tau_e \tau_\mu$, $\tau_e \tau_h$, $\tau_\mu \tau_h$, $\tau_h \tau_h$. v's in final not allow to reconstruct mass of $\tau \tau$ system	o third-
Inot allow to reconstruct mass of tt system.Event selection: 2 τ candidates with p _T between 15 and 35 GeV, η < 2.1, isolation criteria, no b-jets	State do
$\int_{0}^{9} \int_{0}^{10^{2}} \int_{0}^{10$	M _{Z'} (GeV) M _{Z'} (GeV) TeV 1725 PLB 1-031

$W' \rightarrow lv$ without W-W' interference

107

10⁶

10⁵

10⁴

10³

10²

CMS 2012 Prelimin

L dt = 3.67 fb⁻¹

s = 8 TeV

DY -> ee

tt + sinale to

M=1300 Ge

Models studied:

- W'_{SSM} with SM-like couplings, with W'_{SSM} \rightarrow tb allowed - Kaluza-Klein W²_{KK} in split UED framework Event selection: ~back-to-back isol. *l*+E_T^{miss}, energy-balanced

Backgrounds: $W \rightarrow l_V$, QCD, tt+single top, DY, VV from data

$W' \rightarrow lv$ with W-W' interference

A left-handed W_L ' can interfere with the W. Studies were performed with 7 TeV data. Limits for a W_R ' have also been derived.

$W' \rightarrow tb$

• W_R' decays to leptons suppressed if $M(v_R) > M(W') \rightarrow \text{search}$ in hadronic final states important. Decay chain: W' \rightarrow tb \rightarrow Wbb $\rightarrow lv$ bb. Event selection: isol.e(μ) with $p_T > 35(32)$ GeV, $E_T^{\text{jet1(jet2)}} > 100(40)$ GeV, ≥ 1 b-tag Backgrounds: tt+single top, W($\rightarrow lv$)+jets, Z/ γ^* ($\rightarrow ll$)+jets, QCD, VV

10⁴

CMS Preliminary

 $\mu \textbf{+jets N}_{b \text{ tags}} \geq \textbf{1}$

New BDT analysis for signal/background discrimination with ~50 variables (object and event kinematics, top reconstruction, angular correlations).

5.0 fb⁻¹ at $\sqrt{s} = 7$ TeV

Data tt + Single-Top

QCD W'_R 1.0 TeV W'_a 1.0 TeV x 20

W→Iv + Z/v*-

$W' \rightarrow tb$

Most general model-independent LO Lagrangian for a W' coupling to SM fermions:

$$\mathcal{L} = \frac{V_{f_i f_j}}{2\sqrt{2}} g_w \bar{f}_i \gamma_\mu (a_{f_i f_j}^R (1+\gamma^5) + a_{f_i f_j}^L (1-\gamma^5)) W'^\mu f_j + h.c. \quad a_{ud}^{L,R} = a_{cs}^{L,R} = a_{tb}^{L,R} = a^{L,R}$$

Mass limit and constraints of W' gauge coupling for a set of left- and right-handed coupling combinations have been set:

Contours of W' mass at which the observed 95% CL cross-section upper limit equals the predicted cross-section

$W' \rightarrow td$

• Tevatron measurement of forward-backward asymmetry at high $t\bar{t}$ inv. mass

$$A_{FB}^t = \frac{N_t(\eta \ge 0) - N_t(\eta \le 0)}{N_t(\eta \ge 0) + N_t(\eta \le 0)}$$

• Possible explanation: light W'

• N(W'') > N(W'') at LHC -> aids in reconstructing the W'

Decay chain: $pp \rightarrow tW' \rightarrow ttd$, with semileptonic t-decays plus a jet in final state.

Difference of yields for t^-+d and t^++d invariant mass distributions (charge assignment from leptonic top decay):

hep-ex 1206.3921, CMS PAS EXO-11-056

C.-E. Wulz

W', $G_{RS} \rightarrow VZ \rightarrow wide jet + lepton pair$

ICHEP, July 2012

Conclusions

- CMS has studied scenarios for new heavy gauge bosons.
- Although no signals for new physics have been found yet, limits on masses and other quantities have been set.
- Details may be found here:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

We are looking forward to more LHC data!

ICHEP, July 2012