Searches for Diboson production in final states with heavy flavor jets at CDF Marco Trovato* on behalf of the CDF collaboration ICHEP 2012, Melbourne 4-11 July 2012 *: Scuola Normale Superiore (Pisa) & Fermilab ## Outline - Motivations - Experimental Environment - Milestones on diboson searches at CDF - b-tagging - Diboson searches as: - * benchmarks for Higgs analyses - * validation of the SM ### Motivation - Important test of the EWK sector of the SM - deviations from the SM would hint to: - anomalous gauge couplings - new physics Important background to Top, Higgs, SUSY searches "Known" territory to test analysis techniques used for the CDF (low mass) Higgs analyses ### Experimental Environment FERMILAB'S ACCELERATOR CHAIN #### **Tevatron** - $\ref{eq:proton-antiproton}$ proton-antiproton collisions at $\sqrt{s} = 1.96~TeV$ - delivered ~12/fb - ► ~10/fb for analyzers #### **CDF** - Accurate tracking system with silicon - Projective-towers calorimeters to measure e,γ, jet energy - Muon detection system ### Diboson at CDF: history - Observation in fully leptonic states - $WZ \rightarrow l\nu ll$, $ZZ \rightarrow llll$, $WW \rightarrow l\nu l\nu$ - Observation in semileptonic states - MET+jets, lepton+MET+jets # b-tagging 1/2 - Goal: separate jets containing B hadrons from other jets - key to separate WZ/ZZ from WW - Solution: brand new multivariate tagger (HOBIT) - continuous output - operation points can be optimized upon search sensitivity - trained on Higgs and W+jets MC - built upon the strength of previous CDF taggers - using the most powerful inputs # b-tagging # Higher perfomances than previous CDF b-taggers - For identical u,d,s,g-jet accept rate (mistag rate), b-jet efficiency: - ► Tight: 38.6% → 53.6% (mistag rate: 1.4%) - ► Loose: 47.1 → 59.3% (mistag rate: 2.8%) # Calibrated on two orthogonal samples - Results combined to improve the precision - Corrections for: - b-jet efficiency: 0.95 +/- 0.04 (tight), 0.96 +/- 0.04 (loose) - mistag-rate: 1.52 +/- 0.23 (tight), 1.48 +/- 0.17 (loose) # Diboson with heavy flavor jets as Higgs benchmark | Process | σxBR (fb) | |-----------|-----------| | WH->lvbb | 27 | | ZH-> llbb | 5 | | ZH->vvbb | 15 | | Total | 46 | | proton | W ⁺ V | |---------------|------------------| | antiproton q' | Z^0 b | | Process | σxBR (fb) | | | | | |-----------|-----------|--|--|--|--| | WZ->lvbb | 105 | | | | | | ZZ-> llbb | 24 | | | | | | ZZ->vvbb | 73 | | | | | | Total | 202 | | | | | - Diboson searches share the same final states as low mass Higgs analyses - 4-5 times larger cross-sections ### Diboson with heavy flavor jets - Replicate low-mass Higgs analyses - ★ 3 main final states: - > 2,3 jets (>= I b-tagged jet) and - 2 identified leptons ("Ilbb")or - I identified lepton and large MET ("Ivbb") or - large MET ("νν**bb"**) - Re-train multivariate discriminants to extract VZ=WZ+ZZ signal - ullet Some signal contribution from $W o cs, \ Z o cc$ ### llbb - Cleaner sample, lowest signal rate - Selection: - → 2 High P_T electrons/muons - 75<M_{II}/GeV<105</p> - ⇒ 2,3 large E_T jets - >= I b-tagged jet - Analysis strategy: - 16 orthogonal channels examined simultaneously - channels divided upon lepton flavor, number of jets, heavy flavor content - multivariate discriminant for extracting the signal - full reconstruction of the final state - improved sensitivity compared to using dijet invariant mass ### lvbb - Highest signal yield - Selection: - \Rightarrow = I High P_T electron/muon - √ extended lepton acceptance due to a more inclusive triggers - large MET - \implies 2,3 large E_T jets - multivariate techniques to reject multi-jet background - Analysis strategy: - 7 orthogonal channels depending on the flavor content, number of jets - sensitivity improved thanks to HOBIT - Bayesian neural network to discriminate signal from background - different optimization in 2 and 3 jets channels ### vvbb #### Selection: - lepton veto - large MET - \implies 2,3 large E_T jets - NN-based discriminant to reject the large instrumental background - NN to parameterize trigger efficiency curve - allows for more relaxed kinematic cuts #### Analysis strategy: - 3 orthogonal channels depending on the flavor content - still using "pre-HOBIT" CDF taggers - Final neural network to discriminate signal from background - trained separately in 2 and 3 jet sample ### CDF combination - Simultaneous fit on the discriminant distributions of all (26) sub-channels - Systematic uncertainties either fully correlated or uncorrelated - b-tagging efficiency, jet energy scale correlated - multi-jet rate uncorrelated - uncertainties on background rates do not contribute much - Significance $\sim 3.2 \, \sigma$ - Result compatible with SM - $\sigma^{SM}(VZ) = 4.42 \text{ pb}$ #### Diboson with heavy flavor jets as test of the SM - Optimized analysis to isolate WZ/ZZ from WW - Uses the same tools and signature of lvbb analysis - multivariate techniques to reject multi-jet background - at least I b-tagged jet - 2-D fit to extract $\sigma(WZ/ZZ)$, $\sigma(WW)$ - I. dijet invariant mass - 2. NN-based jet flavor separator CDF Run II Preliminary (9.4 fb⁻¹) $$\sigma(WW) = 5.10^{+3.97}_{-3.63} \ pb \qquad (\sigma^{SM} = 11.34 \ pb)$$ $$\sigma(WZ + ZZ) = 7.25^{+3.67}_{-3.40} \ pb \ (\sigma^{SM} = 4.42 \ pb)$$ Consistent with SM # Summary - √ CDF is sensitive to diboson in final states with heavy-flavor jets - paving the way for (low mass) Higgs analyses - but also as a sanity check of the SM / search for new physics $$\sqrt{\sigma(VZ)} = 4.08^{+1.38}_{-1.26} \ pb$$ compatible with SM expectations - $\sqrt{3.2 \sigma}$ evidence for WZ+ZZ - assuming SM $\sigma(WZ)/\sigma(ZZ)$ More details at http://www-cdf.fnal.gov/physics/new/hdg/Results.html backup # Ilbb: NN for jet corrections ``` Inputs to the NN jet-energy correction algorithm lead jet E_T lead jet \eta \Delta\phi(\vec{E}_T, \text{ lead jet}) Z projection onto the lead jet \vec{E}_T projection onto the lead jet second jet E_T second jet \eta \Delta\phi(\vec{E}_T, \text{ second jet}) Z projection onto the second jet \vec{E}_T \Delta\phi(\text{lead jet, second jet}) number of jets ``` TABLE I: Inputs to the jet-energy correction neural network. FIG. 1: The dijet invariant mass distribution for all b-tagged candidates before (left) and after (right) NN correction. The bin at 400 GeV/c^2 contains the histogram overflow. #### Ilbb: Final discriminant | Iı | nputs to the expert neural networks | | | | |--|--|---------------------------------------|--|--| | $tar{t}$ Expert | $Z + l.f./Z + c\bar{c}$ Expert | WZ/ZZ Expert | | | | $ ot\!\!\!E_T$ | NN Corrected M_{jj} | NN Corrected M_{jj} | | | | \vec{E}_T projection onto the all jets | $2\mathrm{nd}\ \mathrm{jet}\ E_T$ | $2\mathrm{nd}~\mathrm{jet}~E_T$ | | | | E_T of Z +all jets | H_T [23] | $\cos(\theta^*)$ [24] | | | | \vec{E}_T projection onto the lead jet | $\Delta R(Z, \;\; { m jet} \; 1)$ | $\Delta R(Z, \text{ jet } 1)$ | | | | E_T of $Z+H$ candidates | combined mass of Z and all jets | $\Delta R(Z,\;H)$ | | | | $ec{E}_T$ projection onto the 2nd jet | combined mass of Z and H candidates | H_T | | | | $\Delta R(Z, \text{ all jets})$ [22] | $\Delta R(\text{lepton 1, lepton 2})$ | Z projection onto all jets | | | | NN Corrected M_{jj} | Z projection onto all jets | $\Delta R(\text{lepton 1, lepton 2})$ | | | | | $Z \; p_T$ | $Z p_T$ | | | | | $ec{\mathcal{L}}_T$ projection onto all jets | | | | | | $\mathrm{jet}\ 1\ E_T$ | | | | TABLE II: Inputs to the expert neural networks, listed in descending order of importance. # llbb: modeling of the final discriminant - pretag FIG. 3: Output of the expert discriminants in the PreTag (defined in text) sample. The bin at zero (one) contains the histogram underflow (overflow). #### Ilbb: event yields | | -Two Jets- | | | | -Three Jets- | | | | |------------------------|----------------|-----------------|------------------|----------------|----------------|----------------|----------------|----------------| | Process | TT | TL | Tx | LL | TT | TL | Tx | $_{ m LL}$ | | $tar{t}$ | 20.1 ± 2.8 | 21.5 ± 2.8 | 36.1 ± 4.7 | 6.1 ± 0.8 | 7.5 ± 1.2 | 9.3 ± 1.4 | 13.5 ± 1.9 | 2.9 ± 0.5 | | Diboson | 4.7 ± 0.6 | 6.5 ± 0.9 | 19.6 ± 1.8 | 3.9 ± 0.4 | 0.7 ± 0.1 | 1.3 ± 0.2 | 3.0 ± 0.4 | 1.0 ± 0.1 | | $Z+bar{b}$ | 19.1 ± 8.0 | 26.8 ± 11.3 | 81.5 ± 34.2 | 10.2 ± 4.4 | 4.5 ± 2.0 | 6.5 ± 2.9 | 14.1 ± 6.2 | 2.5 ± 1.1 | | $Z+car{c}$ | 1.5 ± 0.6 | 6.9 ± 2.9 | 39.0 ± 16.8 | 7.3 ± 3.1 | 0.5 ± 0.2 | 1.7 ± 0.8 | 7.4 ± 3.3 | 2.4 ± 1.1 | | Z+l.f. | 0.7 ± 0.3 | 8.3 ± 2.0 | 124.9 ± 27.5 | 27.5 ± 6.6 | 0.3 ± 0.1 | 2.8 ± 0.8 | 20.3 ± 5.5 | 8.1 ± 2.3 | | mis-ID ${\it Z}$ | 0.1 ± 0.0 | 5.1 ± 2.6 | 7.7 ± 3.9 | 1.1 ± 0.6 | 0.0 ± 0.0 | 2.1 ± 1.0 | 5.2 ± 2.6 | 3.0 ± 1.5 | | Total Bkg. | 46.2 ± 8.6 | 75.2 ± 12.4 | 309.2 ± 47.4 | 56.1 ± 8.6 | 13.6 ± 2.3 | 23.6 ± 3.5 | 63.5 ± 9.5 | 19.9 ± 3.2 | | $ZH(120)~{ m GeV/c^2}$ | 1.1 ± 0.1 | 1.1 ± 0.1 | 1.6 ± 0.2 | 0.3 ± 0.03 | 0.2 ± 0.04 | 0.2 ± 0.04 | 0.3 ± 0.1 | 0.1 ± 0.01 | | Data | 45 | 83 | 352 | 66 | 16 | 23 | 59 | 23 | TABLE IV: Comparison of the expected mean event totals for background and ZH signal with the observed number of data events for the $ZH \rightarrow e^+e^- + b\bar{b}$ channels. The totals are for full event selection, and uncertainties are systematic. | | -Two Jets- | | | | | -Three Jets- | | | | |------------------------|--------------|---------------|------------------|--------------|----------------|----------------|--------------|----------------|--| | Process | TT | TL | Tx | $_{ m LL}$ | TT | TL | Tx | $_{ m LL}$ | | | t ar t | 20.8 ± 3.1 | 22.1 ± 3.1 | 30.4 ± 3.9 | 5.7 ± 0.8 | 6.4 ± 1.2 | 7.4 ± 1.2 | 10.4 ± 1.5 | 2.4 ± 0.4 | | | Diboson | 3.8 ± 0.6 | 5.1 ± 0.7 | 15.1 ± 1.5 | 3.0 ± 0.4 | 0.6 ± 0.1 | 0.9 ± 0.2 | 2.3 ± 0.3 | 0.8 ± 0.1 | | | $Z+bar{b}$ | 15.0 ± 6.3 | 21.0 ± 8.8 | 64.4 ± 27.0 | 7.7 ± 3.2 | 3.5 ± 1.5 | 5.2 ± 2.4 | 11.3 ± 5.0 | 2.3 ± 1.1 | | | $Z+car{c}$ | 1.0 ± 0.4 | 4.6 ± 2.0 | 30.0 ± 12.6 | 6.3 ± 2.6 | 0.4 ± 0.2 | 1.5 ± 0.7 | 5.8 ± 2.5 | 1.9 ± 0.8 | | | Z+l.f. | 0.6 ± 0.3 | 6.2 ± 1.5 | 91.7 ± 20.2 | 19.4 ± 4.5 | 0.3 ± 0.1 | 2.2 ± 0.6 | 15.3 ± 4.0 | 6.3 ± 1.7 | | | mis-ID Z | 1.0 ± 0.1 | 0.0 ± 0.0 | 10.0 ± 0.5 | 1.0 ± 0.1 | 1.0 ± 0.1 | 8.0 ± 0.4 | 8.0 ± 0.4 | 5.0 ± 0.3 | | | Total Bkg. | 42.3 ± 7.1 | 58.9 ± 9.7 | 241.5 ± 36.3 | 43.0 ± 6.2 | 12.2 ± 1.9 | 25.2 ± 2.8 | 53.0 ± 7.0 | 18.8 ± 2.2 | | | $ZH(120)~{ m GeV/c^2}$ | 0.9 ± 0.1 | 0.9 ± 0.1 | 1.4 ± 0.1 | 0.3 ± 0.03 | 0.2 ± 0.03 | 0.2 ± 0.04 | 0.2 ± 0.05 | 0.1 ± 0.01 | | | Data | 41 | 69 | 273 | 51 | 15 | 24 | 46 | 25 | | TABLE V: Comparison of the expected mean event totals for background and ZH signal with the observed number of data events for the $ZH \to \mu^+\mu^- + b\bar{b}$ channels. The totals are for full event selection, and uncertainties are systematic. ### llbb - Cleaner sample, lowest signal rate - Selection: - → 2 High PT electrons/muons - ▶ 75<M_{II}/GeV<105</p> - **⇒** 2,3 large ET jets - >= I b-tagged jet - Analysis strategy: - 16 orthogonal channels examined simultaneously - channels divided upon lepton flavor, number of jets, heavy flavor content - multivariate discriminant for extracting the signal - full reconstruction of the final state - improved sensitivity wrt using dijet invariant mass ### lvbb - Highest signal yield - Selection: - **■** = I High PT electron/muon - √ extended lepton acceptance due to a more inclusive triggers - ➡ large MET - 2,3 large ET jets - multivariate techniques to reject multi-jet background - Analysis strategy: - 7 orthogonal channels depending on the flavor content, number of jets - sensitivity improved thanks to HOBIT - Bayesian neural network to discriminate signal from background - different optimization in 2 and 3 jets channels # lvbb: even yield | Number of Jets | | | | 3 ; | jets | | | |--------------------|---------------------|---------------------|----------------------|--------------------|----------------------|---------------------|-------------------| | Tagging categories | TT | TL | T | LL | L | TT | TL | | DiTop | 177.49 ± 22.17 | 211.19 ± 19.8 | 544.5±52.06 | 63.04±6.93 | 327.74 ± 33.71 | 495.7±61.59 | 581.77±54.47 | | STopS | 59.1±7.06 | 66.39 ± 5.85 | 118.38±10.68 | 19.35 ± 2.19 | 69.4 ± 7.13 | $19.34{\pm}2.33$ | $22.66{\pm}2.01$ | | STopT | 17.4 ± 2.48 | 32.45 ± 3.98 | 228.45±25.63 | 12.21 ± 1.32 | 134.83 ± 15.56 | 22.13±3.03 | 29.87 ± 3.32 | | WW | 1.9 ± 0.48 | 15.54 ± 3.13 | 217.47±27.09 | $29.26{\pm}4.5$ | 719.24 ± 70.55 | 1.8 ± 0.35 | 8.04 ± 1.43 | | WZ | 21.86 ± 2.63 | $25.97{\pm}2.28$ | 63.3 ± 6.23 | 11.8±1 | 115.13 ± 10.59 | 4.19 ± 0.51 | 6 ± 0.57 | | ZZ | 2.6 ± 0.3 | 2.73 ± 0.24 | 7.87 ± 0.77 | 1.08 ± 0.09 | 11.98 ± 1.08 | 0.96 ± 0.11 | 1.22 ± 0.11 | | Zjets | 11.94 ± 1.29 | 23.24 ± 2.47 | 184.32±19.71 | 30.93 ± 3.46 | 815.82 ± 85.61 | 7.03 ± 0.75 | 15.4 ± 1.62 | | Wbb | 284.99±116.78 | 382.43 ± 155.86 | 1372.45±559.67 | 129.59 ± 52.89 | 948.67 ± 387.04 | 107.98 ± 45.01 | 162.42 ± 67.48 | | Wcc | 22.54 ± 9.39 | 141.43 ± 58.32 | 1379.5±564.72 | 196.66±80.63 | 3332.54 ± 1360.1 | 12.59 ± 5.31 | 71.59 ± 30.04 | | Wlf | 5.17 ± 1.54 | 73.93 ± 16.53 | 1179.09±191.85 | 293.49±47.08 | 9732.87 ± 1094.5 | 3.21 ± 1.1 | 41.46 ± 10.51 | | QCD | 12.35 ± 7.94 | 101.82 ± 41.71 | 680.92±272.42 | 125.62 ± 50.72 | 2031.95 ± 812.95 | 5.79 ± 5.17 | $68.53{\pm}28.41$ | | Bkg | 617.34 ± 172.05 | 1077.12±309.74 | 5976.25 ± 1730.5 | 913.03 ± 250.76 | 18240.17±3877.7 | 680.72 ± 125.24 | 1008.96±200.09 | | Obs | 556 | 907 | 5737 | 865 | 18606 | 643 | 850 | | WH115 | 9.57±0.98 | 9.98±0.62 | $16.29{\pm}1.04$ | 2.7±0.27 | $9.07{\pm}0.75$ | 2.2±0.22 | $2.41{\pm}0.14$ | TABLE I: Background summary, signal expectation and data yield for the events with two jets in all b-tagging categories for central leptons. # lvbb: Mj1j2 # lvbb: BNN 3 jets ## VVbb TABLE III: Input variables to the neural network devised to suppress the QCD background, and the background coming from production of light flavor jets. ## VVbb: inputs NN to correct jet ET | Variable | Description | |-------------------------|---| | $\operatorname{Raw}E_T$ | Uncorrected transverse jet energy | | ${ m L5} \; m_T$ | Transverse jet mass corrected to hadronic level | | H1 E_T | H1-corrected transverse jet energy | | π^0 Energy | CES detector energies of π^0 candidates within jet cone | | EM Fraction | Fraction of jet energy collected in EM calorimeter | | Jet η | Jet pseudorapidity | | Maximum Track p_T | Maximum transverse momentum of track within jet cone | | Sum Track p_T | Linear sum of transverse momenta of tracks within jet cone | TABLE II: Description of the NN_{JER} input variables. ### VVbb: inputs final discriminant #### Variable Invariant mass of the two leading jets in the event (M_{jj}) Invariant mass of $\vec{E_T}$, $\vec{j_1}$ and $\vec{j_2}$ Difference between the scalar sum of transverse energy of the jets (H_T) and \cancel{E}_T Difference between the vector sum of transverse energy of the jets (H_T) and E_T The output of the TrackMET neural network Maximum of the difference in the $\eta - \phi$ space between the directions of two jets, taking two jets at the time The output of NN_{OCD} TABLE VII: Input variables to the final discriminant neural network. # VVbb: event yields | $E_T + b$ -jets 9.45 fb ⁻¹ [CDF II Preliminary] | | | | | | | | | | |--|---------|---------|--------|-------|-------|------|--------|-------|-------| | | | 1S | | | SS | | | SJ | | | WW | 158.8 | \pm | 17.2 | 0.8 | \pm | 0.1 | 2.5 | \pm | 0.3 | | WZ/ZZ | 133.9 | \pm | 14.3 | 31.3 | \pm | 3.9 | 27.6 | \pm | 3.2 | | Single Top | 273.6 | \pm | 35.2 | 48.3 | \pm | 7 | 41 | \pm | 5.6 | | Top Pair | 741.5 | \pm | 93.1 | 147.2 | \pm | 21.1 | 133.3 | \pm | 18 | | Z + h.f. | 812.2 | \pm | 146.2 | 73.6 | \pm | 14.2 | 72.4 | \pm | 13.5 | | W+h.f. | 2868.1 | \pm | 528.8 | 123.5 | \pm | 23.9 | 154.4 | \pm | 29.3 | | QCD Multijet | 10824.6 | \pm | 177.3 | 376.9 | \pm | 11.9 | 923.1 | \pm | 19.2 | | EWK Mistags | 2287.8 | \pm | 283 | 16.5 | \pm | 5.4 | 38.4 | \pm | 20.3 | | Total | 18100.6 | \pm | 1295.1 | 818 | \pm | 87.5 | 1392.7 | \pm | 109.5 | | Data | 1 | 816 | 5 | 807 | | | 1310 | | | | ~ *** / 2 | | 10 00 0 | | | | | | | | ### VVbb - Selection: - lepton veto - large MET - 2,3 large ET jets - NN-based discriminat to reject the large instrumental background - NN to paramaterize trigger efficiency curve - allows for more relaxed kinematic cuts - Analysis strategy: - 3 orthogonal channels depending on the flavor content - still using "pre-HOBIT" CDF taggers - Final neural network to discriminate signal from background - trained separately in 2 and 3 jet sample $$\sigma(VZ) = 3.09^{+2.21}_{-1.77} \ pb$$ ### Diboson at CDF: history - Observation in fully leptonic states - $WZ \rightarrow l\nu ll, ZZ \rightarrow llll, WW \rightarrow l\nu l\nu$ - Observation in semileptonic states - MET+jets, lepton+MET+jets cannot separate WW and WZ due to dijet mass resolution # b-tagging 1/2 - Goal: separate jets containing B hadrons from other jets - key to separate WZ/ZZ from WW - Solution: brand new multivariate tagger (HOBIT) - continuous output - operation points can be optimized upon search sensitivity - trained on Higgs and W+jets MC - built upon the strength of previous CDF taggers - using the most powerful inputs #### Some HOBIT inputs # KIT input variables # KIT input variables