Implications of LHC Higgs and SUSY searches for MSSM

Nazila Mahmoudi CERN TH & LPC Clermont-Ferrand (France)

In collaboration with A. Arbey, M. Battaglia & A. Djouadi

36th International Conference on High Energy Physics

4 - 11 July 2012 Melbourne Convention and Exhibition Centre

Introduction	pMSSM	Higgs searches	Implications	Conclusion
•	0	00	0000000	0
SUSY searches				

Search for SUSY is the main focus of BSM searches in both ATLAS and CMS!

Before the start of the LHC: high expectation for an early discovery of SUSY particles:

SUSY could be discovered even before the Higgs!

It appears not to be the case:

So far we have only limits which are pushing the masses to higher and higher values

Not enough to confirm/exclude SUSY

BUT:

- Supersymmetry is more than just the CMSSM!
- An alternative path to constrain SUSY efficiently is through the Higgs sector!

Introduction	PMSSM	Higgs searches	Implications	Conclusion
•	0	00	0000000	0
SUSY searches				

Search for SUSY is the main focus of BSM searches in both ATLAS and CMS!

Before the start of the LHC: high expectation for an early discovery of SUSY particles:

SUSY could be discovered even before the Higgs!

It appears not to be the case:

So far we have only limits which are pushing the masses to higher and higher values

Not enough to confirm/exclude SUSY

BUT:

- Supersymmetry is more than just the CMSSM!
- An alternative path to constrain SUSY efficiently is through the Higgs sector!

A nice framework to go beyond CMSSM is the phenomenological MSSM: The most general CP/R parity-conserving MSSM, assuming Minimal Flavour Violation at the TeV scale and suppresed FCNC's at tree level, with 19 free parameters: 10 sfermion masses, 3 gaugino masses, 3 trilinear couplings, 3 Higgs/Higgsino

siermon masses, 5 gaugino masses, 5 trimear coupings, 5 mggs/mggsino

Flat scans over the pMSSM 19 parameters

- Spectrum generation (SoftSusy, Suspect)
- Low energy observables (SuperIso)
- Dark matter (SuperIso Relic, Micromegas)
- SUSY and Higgs mass limits (Superlso, HiggsBounds)
- Higgs and SUSY decays (HDECAY, Higlu, FeynHiggs, SDECAY)
- Event generation and cross sections (PYTHIA, Prospino)
- Fast detector simulation (Delphes)

Imposing constraints from:

Flavour physics (BR($B \rightarrow X_s \gamma$), BR($B_s \rightarrow \mu^+ \mu^-$), R($B \rightarrow \tau \nu$), BR($D_s \rightarrow \tau \nu$), BR($B \rightarrow D^0 \tau \nu$), R_{μ 23}($K \rightarrow \mu \nu$)), dark matter relic density, sparticly mass upper bounds and Higgs search limits.

A. Djouadi et al., hep-ph/9901246

A nice framework to go beyond CMSSM is the phenomenological MSSM: The most general CP/R parity-conserving MSSM, assuming Minimal Flavour Violation at the TeV scale and suppresed FCNC's at tree level, with 19 free parameters:

10 sfermion masses, 3 gaugino masses, 3 trilinear couplings, 3 Higgs/Higgsino

A. Djouadi et al., hep-ph/9901246

Flat scans over the pMSSM 19 parameters

Parameter	Range (in GeV)
tan β	[1, 60]
MA	[50, 2000]
M ₁	[-2500, 2500]
M ₂	[-2500, 2500]
M ₃	[50, 2500]
$A_d = A_s = A_b$	[-10000, 10000]
$A_{\boldsymbol{u}} = A_{\boldsymbol{c}} = A_{\boldsymbol{t}}$	[-10000, 10000]
$A_e = A_\mu = A_\tau$	[-10000, 10000]
μ	[-3000, 3000]
$M_{\tilde{e}_L} = M_{\tilde{\mu}_L}$	[50, 3000]
$M_{\tilde{e}_R} = M_{\tilde{\mu}_R}$	[50, 3000]
Μ _{τ̃} L	[50, 3000]
M _{r̃} R	[50, 3000]
$M_{\tilde{q}_{1L}} = M_{\tilde{q}_{2L}}$	[50, 3000]
M _{q̃3L}	[50, 3000]
M _{ũR} = M _{čR}	[50, 3000]
M _t R	[50, 3000]
$M_{\tilde{d}_R} = M_{\tilde{s}_R}$	[50, 3000]
M _Ē R	[50, 3000]

- Spectrum generation (SoftSusy, Suspect)
- Low energy observables (SuperIso)
- Dark matter (SuperIso Relic, Micromegas)
- SUSY and Higgs mass limits (Superlso, HiggsBounds)
- Higgs and SUSY decays (HDECAY, Higlu, FeynHiggs, SDECAY)
- Event generation and cross sections (PYTHIA, Prospino)
- Fast detector simulation (Delphes)

Imposing constraints from:

Flavour physics (BR($B \rightarrow X_s \gamma$), BR($B_s \rightarrow \mu^+ \mu^-$), R($B \rightarrow \tau \nu$), BR($D_s \rightarrow \tau \nu$), BR($B \rightarrow D^0 \tau \nu$), R_{μ 23}($K \rightarrow \mu \nu$)), dark matter relic density, sparticle mass upper bounds and Higgs search limits.

Introduction	pMSSM	Higgs searches	Implications	Conclusion
0	0	● ○	0000000	0
Higgs searches				

Both ATLAS and CMS have confirmed the excess at \sim 126 GeV!

Combining ATLAS and CMS results: $M_h = 125.9 \pm 2.1$ GeV

We consider the interval $123 < M_h < 129$ GeV

Introduction	pMSSM	Higgs searches	Implications	Conclusion
0	0	0•	000000	0
Higgs searches				

- In the SM, the Higgs mass is essentially a free parameter
- In the MSSM, the lightest CP-even Higgs particle is bounded from above: $M_h^{max} \approx M_Z |\cos 2\beta| + \text{radiative corrections} \lesssim 110 - 135 \text{ GeV}$
- Imposing M_h places very strong constraints on the MSSM parameters through their contributions to the radiative corrections

$$M_h^2 \overset{M_A \gg M_Z}{\approx} M_Z^2 \cos^2 2\beta + \frac{3m_t^4}{2\pi^2 v^2} \left[\log \frac{M_S^2}{m_t^2} + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12M_S^2} \right) \right]$$

Important parameters for MSSM Higgs mass:

• tan β and M_A

• the SUSY breaking scale $M_S = \sqrt{m_{ ilde{t}_1} m_{ ilde{t}_2}}$

• the mixing parameter in the stop sector $X_t = A_t - \mu \cot eta$

• M_h^{max} is obtained for:

- ullet a decoupling regime with a heavy pseudoscalar Higgs boson, $M_A\sim \mathcal{O}({\sf TeV})$
- ullet large tan eta, i.e. tan $eta\gtrsim 10$
- heavy stops, *i.e.* large M_S
- maximal mixing scenario, *i.e.* $X_t = \sqrt{6}M_S$

Introduction	pMSSM	Higgs searches	Implications	Conclusion
0	0	0•	000000	0
Higgs searches				

- In the SM, the Higgs mass is essentially a free parameter
- In the MSSM, the lightest CP-even Higgs particle is bounded from above: $M_h^{max} \approx M_Z |\cos 2\beta| + \text{radiative corrections} \lesssim 110 - 135 \text{ GeV}$
- Imposing M_h places very strong constraints on the MSSM parameters through their contributions to the radiative corrections

$$M_h^2 \stackrel{M_A \gg M_Z}{\approx} M_Z^2 \cos^2 2\beta + \frac{3m_t^4}{2\pi^2 v^2} \left[\log \frac{M_S^2}{m_t^2} + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12M_S^2} \right) \right]$$

- Important parameters for MSSM Higgs mass:
 - $\tan\beta$ and M_A
 - the SUSY breaking scale $M_{S}=\sqrt{m_{ ilde{t_1}}m_{ ilde{t_2}}}$
 - the mixing parameter in the stop sector $X_t = A_t \mu \cot \beta$
- M_h^{max} is obtained for:
 - a decoupling regime with a heavy pseudoscalar Higgs boson, $M_A \sim \mathcal{O}(\text{TeV})$
 - large tan eta, *i.e.* tan $eta\gtrsim 10$
 - heavy stops, *i.e.* large M_S
 - maximal mixing scenario, *i.e.* $X_t = \sqrt{6}M_S$

Consequences of a 126 GeV Higgs on constrained MSSM scenarios

Maximal Higgs mass

Several constrained models are excluded or about to be!

Introduction	pMSSM	Higgs searches	Implications	Conclusion
0	0	00	000000	0
Sensivity to the top	mass			

Impact of m_t on the Higgs mass:

 $m_t = 170, 173 \text{ and } 176 \text{ GeV}$

A. Arbey, M. Battaglia, A. Djouadi, F.M., arXiv:1207.1348

The variations in the top mass is directly transmitted to the Higgs mass!

That can even resurrect mGMSB!

Influence on squark spectra

With $M_h > 111$ GeV

With 123 $< M_h < 127 \text{ GeV}$

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1847 A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1906

Introduction	pMSSM	Higgs searches	Implications	Conclusion
0	0	00	0000000	0
Consequences of a	126 GeV Higgs			

Particular benchmark scenarios

In the **maximal mixing** scenario $(X_t \approx \sqrt{6}M_S)$:

A. Arbey, M. Battaglia, A. Djouadi, F.M., arXiv:1207.1348

Cyan: CMS limit from $A^0 \rightarrow \tau \tau$ with 4.6/fb Red: flavour constraints: $b \rightarrow s\gamma$, $B \rightarrow \tau \nu$ and $B_s \rightarrow \mu \mu$

Very strong constraint from the neutral Higgs searches!

Introduction	pMSSM	Higgs searches	Implications	Conclusion
0	0	00	0000000	0
Consequences of a	126 GeV Higg	çs		

Particular benchmark scenarios

In the **typical mixing** scenario $(X_t \approx M_S)$:

A. Arbey, M. Battaglia, A. Djouadi, F.M., arXiv:1207.1348

Cyan: CMS limit from $A^0 \rightarrow \tau \tau$ with 4.6/fb Red: flavour constraints: $b \rightarrow s\gamma$, $B \rightarrow \tau \nu$ and $B_s \rightarrow \mu \mu$

Very strong constraint from the neutral Higgs searches!

Nazila Mahmoudi

Introduction	PMSSM	Higgs searches	Implications	Conclusion
0	0	00	0000000	0
Consequences of	a 126 GeV Hig	gs		

Particular benchmark scenarios

In the **no mixing** scenario $(X_t \approx 0)$:

A. Arbey, M. Battaglia, A. Djouadi, F.M., arXiv:1207.1348

Cyan: CMS limit from $A^0 \rightarrow \tau \tau$ with 4.6/fb Red: flavour constraints: $b \rightarrow s\gamma$, $B \rightarrow \tau \nu$ and $B_s \rightarrow \mu \mu$

Very strong constraint from the neutral Higgs searches!

Nazila Mahmoudi

Favoured region: χ^2 analysis and normalized distributions

A. Arbey, M. Battaglia, A. Djouadi, F.M., arXiv:1207.1348

Solid lines: accepted pMSSM points with 123 < M_h < 129 GeV Dashed lines: points favoured at 90% C.L. by M_h , BR($h^0 \rightarrow \gamma\gamma$), BR($h^0 \rightarrow ZZ$) and BR($h^0 \rightarrow b\bar{b}$) $R_{\gamma\gamma} = 1.71 \pm 0.33$, $R_{ZZ} = 0.95 \pm 0.40$ (ATLAS+CMS), $R_{b\bar{b}} = 1.06 \pm 0.50$ (CMS+Tevatron)

 \rightarrow Heavy stops and light sbottoms favoured by the new results!

Nazila Mahmoudi

Introduction	pMSSM	Higgs searches	Implications	Conclusion
0	0	00	000000	•
Conclusion				

- Impressive impact of the Higgs searches on SUSY scenarios
- Complementary to the direct SUSY searches
- Several constrained MSSM scenarios are about to be ruled out by the Higgs discovery
- It is now mandatory to go beyond CMSSM
- There is still plenty of room in general MSSM

Imagine what we can get by the end of the year with 3 times more data!

Introduction	pMSSM	Higgs searches	Implications	Conclusion
0	0	00	000000	0
Backup				

Backup

Nazila Mahmoudi

Considering 2 scenarios:

• Current bound from LHCb+CMS + estimated th syst:

 ${
m BR}(B_s o \mu^+ \mu^-) < 1.26 imes 10^{-8}$

• SM like branching ratio with estimated 20% total uncertainty

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012)

1906

Light M_A strongly constrained!

Introduction	pMSSM	Higgs searches	Implications	Conclusion			
0	0	00	0000000	0			
Dark matter direct detection							

Considering 2 scenarios:

- Current Xenon 100 limit
- Projected 2012 90% C.L. upper limit

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012)

1906

Again light M_A strongly constrained!

Nazila Mahmoudi

Introduction	pMSSM	Higgs searches	Implications	Conclusion
0	0	00	0000000	0
Higgs searches				

Direct searches for $A \rightarrow \tau \tau$

CMS-PAS-HIG-11-009

Allowed region of $(M_A, \tan \beta)$ from full pMSSM scans for 1.1 and 15 fb⁻¹ compared to published CMS expected limit

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012)

1906

Low M_A region below 350 GeV can be explored and excluded if no signal except a narrow strip around $\tan \beta = 5$.