

$B \rightarrow \tau V$ and $B \rightarrow D^{(*)} \tau V$ decays at BaBar

Guglielmo De Nardo
University of Napoli "Federico II" and INFN
Representing the BaBar collaboration

36th International Conference on High Energy Physics July 2012, Melbourne, Australia

Tagging method

- Weak signal signature
 - Decay with missing momentum (many neutrinos in the final state)
 - Lack of kinematics constraints in final state
- background rejection improved reconstructing the companion B
- Look for signal in the rest of the event
 - Expect to find nothing more than visible signal decay products
 - No additional track and little activity in the calorimeter

Leptonic B decays

• B \rightarrow IV very clean theoretically. SM uncertainty in the B decay constant f_R and |Vub| value.

 Interesting probe of physics beyond the SM, since also a charged Higgs can mediate the decay

$$\mathcal{B}(B\to l\nu)_{2HDM} = \mathcal{B}(B\to l\nu)_{SM} \times (1-tan^2\beta\frac{m_B^2}{m_H^2})^2 \\ \mathcal{B}(B\to l\nu)_{SUSY} = \mathcal{B}(B\to l\nu)_{SM} \times (1-\frac{tan^2\beta}{1+\epsilon_0tan\beta}\frac{m_B^2}{m_H^2})^2 \\ \mathbf{v}_{L}(B\to l\nu)_{SM} \times (1-\frac{tan^2\beta}{1+\epsilon_0tan\beta}\frac{m_B^2}{m_H^2})^2$$

• B $\rightarrow \tau \nu$ used in global UT fits. B $\rightarrow \mu \nu$ out of reach of current B-factories

$B \rightarrow \tau v$ with hadronic tags at BaBar

- Fit to residual energy in calorimenter simultaneously in 4 arXiv:1207.0698[hep-ex] reconstructed modes ($\tau \rightarrow evv$, $\tau \rightarrow \mu vv$, $\tau \rightarrow \pi v$, $\tau \rightarrow \rho v$) Submitted to Phys.Rev.D (R)
- Floating parameters: BF and 4 background yields
- Combinatorial B tag background estimated from data.
 B⁺ background shape from MC
- Excess of events over background of 3.8 σ

MC modelling of signal E_{extra} PDF checked with

double tags

$$\mathcal{B}(B^+ \to \tau^+ \nu) = (1.83^{+0.53}_{-0.49}(\text{stat.}) \pm 0.24(\text{syst.})) \times 10^{-4}$$

Comparison with the 2HDM type II

$$\mathcal{B}(B \to l\nu)_{2HDM} = \mathcal{B}(B \to l\nu)_{SM} \times (1 - tan^2 \beta \frac{m_B^2}{m_H^2})^2$$

Uncertainty in Standard Model prediction mostly due to |V_{ub}|

$$|V_{ub}|_{incl} = (4.33 \pm 0.28) \times 10^{-3}$$

 $|V_{ub}|_{excl} = (3.13 \pm 0.30) \times 10^{-3}$
 $f_B = (189 \pm 4) \text{ MeV (HPQCD arXiv:1202.4914)}$

Constraints on the tan β vs m_{H+} plane in 2HDM type II

Most of the parameter space of 2HDM is excluded at 90% C.L., if we assume exclusive $|V_{ub}|$ determination

90% C.L. exclusion for m_{H^+} up to 1 TeV at very high tan β (>70) using inclusive $|V_{ub}|$

Ratio of B \rightarrow D(*) τv to B \rightarrow D(*) τv

• Semileptonic decays with a τ

$$W^-/H^- < rac{ au^-}{ au^-} \ B\{rac{b^-}{q^-} D^{(*)}$$

$$\frac{d\Gamma_{\tau}}{dq^2} = \frac{G_F^2 |V_{cb}|^2 |\mathbf{p}| q^2}{96\pi^3 m_B^2} \left(1 - \frac{m_{\tau}^2}{q^2}\right)^2 \left[\left(|H_{++}|^2 + |H_{--}|^2 + |H_{00}|^2\right) \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} |H_{0t}|^2 \right]$$

$$D^* \text{ only}$$

H⁺ contr. here

We test the SM measuring the ratios

$$R(D) = \frac{Br(\overline{B} \to D\tau \nu)}{Br(\overline{B} \to D\ell \nu)} \qquad \qquad R(D^*) = \frac{Br(\overline{B} \to D^*\tau \nu)}{Br(\overline{B} \to D^*\ell \nu)}$$

• SM predictions are $R(D) = 0.297 \pm 0.017$ and $R(D^*) = 0.252 \pm 0.003$

Analysis strategy

- Full reconstruction of a tag B in hadronic decays.
- Identify e or μ and reconstruct a D meson (D*+, D*0, D+, D0)
- Kinematic requirement: q² > 4 GeV²

arXiv:1205.5442[hep-ex] Submitted to Phys.Rev.Lett.

• 2D likelihood fit to $M_{miss}^2 = (P_{ee} - p_{tag} - p_D - p_I)^2$ and p_I^*

Yields floating

 $B \rightarrow D I v$ normalization

 $B \rightarrow D \tau v signal$

B \rightarrow D** | v background (from a D^(*) π^0 | v CS) Fixed parameters

BB combinatorial and continuum bkgs cross-feeds among modes

PDF taken from Monte Carlo

$\mathbf{B} \rightarrow \mathbf{D}^* \ \tau \ v \ \mathbf{results}$

	$D^{*0}\tau\nu$	$D^{*+}\tau\nu$	$D^*\tau\nu$
$N_{ m sig}$	639 ± 62	245 ± 27	888 ± 63
Significance (σ)	11.3	11.6	16.4
$R(D^*)$	0.322 ± 0.032	0.355 ± 0.039	0.332 ± 0.024

Isospin constrained

$\mathbf{B} \rightarrow \mathbf{D} \ \tau \, \mathbf{v} \ \mathbf{results}$

	$D^0 au u$	$D^+ \tau \nu$	$D\tau\nu$
$N_{ m sig}$	314 ± 60	177 ± 31	489 ± 63
Significance (σ)	5.5	6.1	8.4
R(D)	0.429 ± 0.082	0.469 ± 0.084	0.440 ± 0.058

Isospin constrained

Systematic Uncertainties

- Main systematics uncertainties
 - D** background yield from a $D^{(*)} \pi^0 | V$ Data control sample
 - Signal MC statistic
 - For PDF extraction
 - BB and continuum background

Source	Uncertainty (%)		
Source	R(D)	$R(D^*)$	ρ
$D^{**}\ell\nu$ background	5.8	3.7	0.62
MC statistics	5.0	2.5	-0.48
Cont. and $B\overline{B}$ bkg.	4.9	2.7	-0.30
$\varepsilon_{\rm sig}/\varepsilon_{\rm norm}$	2.6	1.6	0.22
Systematic uncertainty	9.5	5.3	0.05
Statistical uncertainty	13.1	7.1	-0.45
Total uncertainty	(16.2)	(9.0)	(-0.27)

$D(*) \pi^0 l \nu$ Control sample

Comparison with Standard Model

Z. Phys C46, 93 (1990) PRD 82, 0340276 (2010) PRD 85, 094025 (2012) and recent updates

	R(D)	R(D*)
BABAR	0.440 ± 0.071	0.332 ± 0.029
SM	0.297 ± 0.017	0.252 ± 0.003
Difference	2.0 σ	2.7 σ

Combinination yields

 χ^2 / n.d.o.f. = 14.6/2

(probability: 6.9×10^{-4})

 3.4σ away from SM

2HDM type II cannot explain the excess

A Charged Higgs within 2HDM type II contribution:

$$H_t^{
m 2HDM} = H_t^{
m SM} imes \left(1 + \left(\frac{ an^2 eta}{m_{H^\pm}^2}\right) + \frac{q^2}{1 \mp m_c/m_b}\right)$$
 - for D $au \nu$ PRD 78, 015006 (2008) + for D $^* \tau \nu$ PRD 85, 094025 (2012)

Taking into account the effect of β/m_H on efficiency

R(D)
$$\rightarrow$$
 tan β/m_H = 0.44 ± 0.02
R(D*) \rightarrow tan β/m_H = 0.75 ± 0.04

Mutually exclusive with CL >99.8%

Conclusions

• Updated result on B $\rightarrow \tau \nu$ with hadronic tagging

BF(B
$$\rightarrow \tau \nu$$
) = (1.8 ± 0.5± 0.2) × 10⁻⁴.
arXiv:1207.0698 [hep-ex], submitted to Phys.Rev.D (R)

Agreement with the SM in tension using exclusive |Vub| measurements (2.4 σ) Better agreement using inclusive |Vub| (1.6 σ)

• Improved measurement of $R(D^{(*)}) = BF(B \rightarrow D^{(*)} \tau \nu) / BF(B \rightarrow D^{(*)} | \nu)$

$$R(D^*) = 0.332 \pm 0.024 \pm 0.018$$

$$R(D) = 0.440 \pm 0.058 \pm 0.042$$

exceeding the SM predicted values by 3.4 σ .

arXiv:1205.5442[hep-ex], submitted to Phys.Rev.Lett.

 2HDM type II (alone) cannot accommodate the results and theorists already at work building models