Rare or forbidden B decays with **BABAR**

Steven Robertson Institute of Particle Physics & McGill University

Presented at ICHEP 2012 on behalf of the BABAR Collaboration July 6, 2012 Melbourne, Australia

Recent *BABAR* results of searches for the rare or forbidden decays:

•
$$B^+ \rightarrow h^- \ell^+ \ell^+$$

 $h = K_- \pi$

- $B^+ \rightarrow h^+ \tau^+ \ell^ \int \ell = e, \mu$
- $B^0 \rightarrow v \overline{v} (\gamma)$ (i.e. invisible final states)

 e^+e^- collisions at CM energy of ~10.58 GeV

LNV in $B^+ \rightarrow h^- \ell^+ \ell^+$ is ΔL =2 process which • can occur via Majorana neutrinos

Lepton number not explicitly conserved

complementary to 0vββ searches

BABAR search for $B^+ \rightarrow h^- \ell^+ \ell^+$ (h=K, π)

- 3-charged-particle final states, with "wrong-sign" charge combinations compared with SM $B^+ \rightarrow K^+ \ell^+ \ell^-$ modes
 - Event selection similar to $B \rightarrow K^{(*)} \ell^+ \ell^$ analysis (see talk by G. Eigen, Weds 2:15)
- Use $B^+ \rightarrow h^+ J/\psi$ ($\rightarrow \ell^+ \ell^-$) control samples to validate signal efficiencies

 $B^+ \rightarrow h^- \ell^+ \ell^+ (h = K, \pi)$ PRD, 85, 071103(R) (2012)

BABAR

•

$B^+ \rightarrow h^- \ell^+ \ell^+ (h=K,\pi)$

BABAR PRD, 85, 071103(R) (2012)

- Background suppression using 18-input Boosted Decision Tree (BDT) based on event shape variables
- Signal extracted from 2-d fit to m_{ES} and BDT output

- Substantial improvement in electron channel results
- $\mu^{+}\mu^{+}$ mode sensitivity comparable to LHCb:

LHCb: $B(B^+ \rightarrow X^- \mu^+ \mu^+) < 1.3 \times 10^{-8} - 2.6 \times 10^{-6}$ (41 pb⁻¹) PRL 108, 101601 (2012); arXiv:1201.5600

Mode	\mathcal{B} (×10 ⁻⁸)	$\mathcal{B}_{UL}~(imes 10^{-8})$
$B^+ \to \pi^- e^+ e^+$	$0.27^{+1.1}_{-1.2}\pm0.1$	2.3
$B^+ \to K^- e^+ e^+$	$0.49^{+1.3}_{-0.8}\pm0.1$	3.0
$B^+ \to \pi^- \mu^+ \mu^+$	$0.03^{+5.1}_{-3.2}\pm0.6$	10.7
$\underline{B^+ \to K^- \mu^+ \mu^+}$	$0.45^{+3.2}_{-2.7}\pm0.4$	6.7

for $B \rightarrow K\tau e$, $\pi\tau\mu$, and $\pi\tau e$

Steven Robertson

5

Lepton flavour is not conserved in standard model

 $B^{\pm} \rightarrow h^{\pm} \tau^{+} \ell^{-}$ (h=K, π)

 Charged LFV from neutrino mixing expected, but at levels far below current experimental sensitivity, hence excellent probes of beyond-SM physics

New sources of explicit non-conservation arise in many new physics scenarios

 Most interesting decays are those containing 3rd generation charged lepton (τ) due to large mass (e.g. Higgs mediated LFV) and less stringent experimental constraints

> **BABAR** (383M BB) B(B[±] \rightarrow K[±] $\tau^{+}\mu^{-}$) < 7.7 x 10⁻⁵ PRL 99, 201801 (2007)

New search reports first experimental results

 $\bar{}, \mu^+$

Methodology

B decays with neutrinos (or other missing energy) have limited kinematic information available to uniquely identify the signal decay

 Instead, exclusively reconstruct one of the B meson decays ("tag B") in one of several thousand hadronic (or semileptonic) decay modes:

- Improves knowledge of signal kinematics and missing energy, and strongly suppresses combinatorial backgrounds
- Disadvantage: low reconstruction efficiency
- Analogous method based on semileptonic $B^0 \rightarrow D^{(*)}\ell^+\nu$ decays

$B^{\pm} \rightarrow h^{\pm} \tau^{+} \ell^{-}$ (h=K, π)

Search for evidence of signal decay in remaining detector activity after "hadronic tag B" reconstruction

• 1-prong τ decay modes $(e/\mu/\pi)$ i.e. 3-track final state signature

Suppress backgrounds from b \rightarrow c decay by requiring "K- π " invariant mass to be above D mass (m_{K π}> 1.95 GeV)

 combine primary hadron (h) with oppositely charged track (either the primary lepton or tau daughter e, μ or π)

July 6, 2012

Rare and forbidden B decays with BABAR Steven Robertson

 $B^{\pm} \rightarrow h^{\pm} \tau^{+} \ell^{-} (h = K, \pi)$

Define $B^+ \rightarrow D^{(*)0} \ell^+ \nu$ ($D^0 \rightarrow K^+ \pi^-$) control samples by requiring $m(K\pi)$ consistent with D⁰ mass:

 $1.845 < m(K\pi) < 1.885 \text{ GeV/c}^2$

use to normalize signal modes to • measured $B^+ \rightarrow D^{(*)0} \ell^+ \nu$ branching fractions

Continuum background suppressed with multivariate likelihood based on event shape, calorimeter energy deposition and PID quality

• veto $J/\psi \rightarrow \ell^+ \ell^-$ and photon conversions based on $m(\ell^+\ell^-)$

RARAR

arXiv:1204.2852

$B^{\pm} \rightarrow h^{\pm} \tau^{+} \ell^{-}$ (h=K, π)

Extract signal from data yield in reconstructed τ invariant mass (m_{τ})

• 4-vector of τ determined from $h-\ell-B$ combination

$$\vec{p}_{\tau} = -\vec{p}_{\text{tag}} - \vec{p}_{h} - \vec{p}_{\ell}, E_{\tau} = E_{\text{beam}} - E_{h} - E_{\ell}, m_{\tau} = \sqrt{E_{\tau}^{2} - |\vec{p}_{\tau}|^{2}},$$

• m_{τ} sideband regions used to estimat background in signal region

Model independent limits on NP scale in τ - μ flavour changing operators*:

$$\Lambda_{bd} > 11 \text{ TeV}$$

 $\Lambda_{bs} > 15 \text{ TeV}$ * PRD 66, 053002 (2002)

$\mathbf{B}^{0} \rightarrow v \overline{v}(\gamma)$ ("invisible")

 $B^0 \rightarrow vvv$ strongly helicity suppressed FCNC in SM

• Presence of energetic photon removes suppression:

B($B^0 \rightarrow v \overline{v} \gamma$)_{SM} ~ 10⁻⁹

• Experimental signature (missing energy) does not distinguish between final state neutrinos or other undetected particles

Possibility of enhancement to ~10⁻⁷-10⁻⁶ in some new physics models (RPV SUSY, LED models)

- Light neutralino contributions to $B^0 \rightarrow invisible$:

SM contributions:

$B^0 \rightarrow v \overline{v}(\gamma)$ ("invisible")

BABAR Submitted to PRD arXiv:1206.2543

Summary

Recent results from **BABAR** on very rare or forbidden processes:

- Search for lepton number violation in $B^+ \rightarrow h^- \ell^+ \ell^+$ PRD, 85, 071103(R) (2012)
- Search for lepton flavour violation in $B^+ \rightarrow h^+ \tau^+ \ell^-$ Accepted by PRD; arXiv:1204.2852
- Search for "invisible" final states in $B^0 \rightarrow v \bar{v} (\gamma)$

Submitted to PRD; arXiv:1206.2543

⇒ No evidence of signal in any mode, consistent with standard model expectation

Backup slides

BABAR Accepted by PRD arXiv:1204.2852

					$\mathcal{B}(B \to h \tau \ell) \; (\times 10^{-5})$	
Mode	τ channel	b_i	n_i	$\epsilon_{h au\ell,i}$	central value	90% C.L. UL
	e	0.4 ± 0.2	2	$(2.6\pm0.2)\%$		
$B^+ \to K^+ \tau^- \mu^+$	μ	0.3 ± 0.2	0	$(3.2\pm0.4)\%$	$0.8 \ ^{+1.9}_{-1.4}$	< 4.5
	π	1.8 ± 0.8	1	$(4.1\pm0.4)\%$		
$B^+ \to K^+ \tau^+ \mu^-$	e	0.2 ± 0.1	0	$(3.7\pm0.3)\%$		
	μ	0.2 ± 0.1	0	$(3.6\pm0.7)\%$	$-0.4 \ ^{+1.4}_{-0.9}$	< 2.8
	π	6.9 ± 1.5	11	$(9.1\pm0.5)\%$		
$B^+ \rightarrow K^+ \tau^- e^+$	e	0.6 ± 0.1	2	$(2.2 \pm 0.2)\%$		
	μ	0.1 ± 0.1	0	$(2.7\pm0.6)\%$	$0.2 \ ^{+2.1}_{-1.0}$	< 4.3
	π	1.5 ± 0.5	1	$(4.8\pm0.6)\%$		
$B^+ \rightarrow K^+ \tau^+ e^-$	e	0.8 ± 0.5	0	$(2.8 \pm 1.1)\%$		
	μ	0.1 ± 0.1	0	$(3.2\pm0.7)\%$	$-1.3 \begin{array}{c} +1.5 \\ -1.8 \end{array}$	< 1.5
	π	4.6 ± 1.3	4	$(8.7\pm1.2)\%$		
$B^+ \to \pi^+ \tau^- \mu^+$	e	0.9 ± 0.6	0	$(2.3 \pm 0.2)\%$		
	μ	1.1 ± 0.4	2	$(2.9\pm0.4)\%$	$0.4 \ ^{+3.1}_{-2.2}$	< 6.2
	π	3.3 ± 0.9	4	$(2.8\pm0.2)\%$		
	e	2.1 ± 0.5	2	$(3.8\pm0.3)\%$		
$B^+ \to \pi^+ \tau^+ \mu^-$	μ	3.6 ± 0.9	4	$(4.8\pm0.3)\%$	$0.0 \ ^{+2.6}_{-2.0}$	< 4.5
	π	25 ± 3	23	$(9.1\pm0.6)\%$		
$B^+ \to \pi^+ \tau^- e^+$	e	0.1 ± 0.1	1	$(2.0\pm0.8)\%$		
	μ	0.4 ± 0.2	1	$(2.8\pm0.3)\%$	$2.8 \ ^{+2.4}_{-1.9}$	< 7.4
	π	6.0 ± 1.4	7	$(5.8\pm0.3)\%$		
$B^+ \rightarrow \pi^+ \tau^+ e^-$	e	1.0 ± 0.4	0	$(2.9 \pm 0.3)\%$		
	μ	3.0 ± 1.2	2	$(4.6\pm0.4)\%$	$-3.1 \ ^{+2.4}_{-2.1}$	< 2.0
	π	5.7 ± 2.5	3	$(3.7\pm1.0)\%$		

BABAR Accepted by PRD arXiv:1204.2852

The BABAR experiment

Large data samples corresponding to

- **432 fb⁻¹** Υ(**4S**) "onpeak"
- 53 fb⁻¹ "offpeak"
 - collected ~40MeV below $\Upsilon(4S)$ peak
- Also samples of "narrow Υ " events:
 - 122 x 10⁶ Υ(3S) decays
 - 99 x 10⁶ Υ(2S) decays

July 6, 2012

Rare and forbidden B decays with BABAR

Steven Robertson

