

Melbourne

UNIVERSITY OF CAMBRIDGE

Studies of charm mixing and CP violation at LHCb

Jordi Garra Ticó University of Cambridge

Mixing and CP violation

Mixing determines the time evolution of the flavor eigenstates

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle \qquad x = \frac{m_1 - m_2}{\Gamma} \quad y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma} \quad \Gamma$$

$$A_f = \langle f | \mathcal{H} | D^0 \rangle \qquad \left| \frac{\bar{A}_{\bar{f}}}{\bar{A}_{\bar{f}}} \right| \neq \bar{A}_{\bar{f}} = \langle \bar{f} | \mathcal{H} | \bar{D}^0 \rangle \qquad \left| \frac{\bar{A}_{\bar{f}}}{\bar{A}_{f}} \right| \neq$$

CPV in the decay

• Different decay amplitudes for D^0 and $\overline{D}{}^0$ decays

CPV in the mixing

• Hamiltonian eigenstates \neq CP eigenstates • Different mixing rates $D^0 \rightarrow \overline{D}^0$ and $\overline{D}^0 \rightarrow D^0$.

CPV in the interference

Hamiltonian eigenstates ≠ CP eigenstates
 Phase effect

Standard model predictions

- Short distance contributions
 - Mixing box diagrams.
 - SM predicts small mixing effects.
 - b quarks are CKM suppressed, and s and d quarks are GIM suppressed.
 - They mainly contribute to the x mixing parameter.
- Long distance contributions
 - Hadronic intermediate states.
 - Expected to be dominant, but still small.
 - Hard to estimate, since they are not perturbative.
 - Predictions give x and y in the range [0.001, 0.01], and |x| < |y|.
- CPV is predicted to be $O(10^{-5} 10^{-2})$.

A. Falk et al., PRD 69, 114021 (2004)

LHCb detector

Experimental status

In all analyses, D⁰ flavor is always tagged using $D^{*+} \rightarrow D^0 \pi^+$

Mixing in two-body decays

$$y_{CP} = \frac{\tau(D^0 \to K^- \pi^+)}{\tau(D^0 \to K^- K^+)} - 1$$
$$A_{\Gamma} = \frac{\tau(\bar{D}^0 \to K^+ K^-) - \tau(D^0 \to K^+ K^-)}{\tau(\bar{D}^0 \to K^+ K^-) + \tau(D^0 \to K^+ K^-)}$$

Uses *swimming* technique to obtain D meson **decay time acceptance** from data.

R. Bailey et al, Z. Phys. C 28 (1985) 357 CERN-THESIS-2008-044

CPV in D \rightarrow h⁺ h⁻ decays

Difference of raw asymmetries: $\Delta A_{CP} = A_{CP}(KK) - A_{CP}(\pi\pi) = A_{raw}(KK) - A_{raw}(\pi\pi)$

• Production and soft pion detection asymmetries cancel at 1st order.

•No detection asymmetry for KK or $\pi\pi$ final states.

• D and π_{s} detection and D* production systematic uncertainties suppressed at 1st order.

Measurement of ΔA_{CP} :

• Yields obtained from fits to $\delta m = m(D^*) - m(D) - m(\pi^+)$

•216 bins of kinematics, magnet polarity and running periods.

• Measured asymmetries consistent in all bins.

First evidence of CPV at LHCb [0.62 fb⁻¹ (2011)] $\Delta A_{CP} = [-0.82 + 0.21 \text{ (stat)} + 0.11 \text{ (syst)}] \cdot 10^{-2}$

1112.0938 [PRL108, 111602 (2012)]

Also confirmed by **CDF** [9.7 fb⁻¹ (2002-2011)] $\Delta A_{CP} = [-0.62 + 0.21 \text{ (stat)} + 0.10 \text{ (syst)}] \cdot 10^{-2}$

La Thuile 2012 (A. Di Canto) & CDF Note 10784

$$\Delta A_{CP} = \left[a_{CP}^{\mathrm{dir}}(K^-K^+) - a_{CP}^{\mathrm{dir}}(\pi^-\pi^+)\right] + \frac{\Delta \langle t \rangle}{\tau_D} a_{CP}^{\mathrm{ind}}$$

CPV in D⁺ \rightarrow K⁻K⁺ π^+ decays

- Model independent search in distribution across Dalitz plot
- Measurement of asymmetry significance
 - •Not direct measurement of CPV parameters

$$S_{CP}^{k} = \frac{N_{k}(D^{+}) - \alpha N_{k}(D^{-})}{\sqrt{N_{k}(D^{+}) + \alpha^{2} N_{k}(D^{-})}} \qquad \alpha = \frac{N_{\text{total}}(D^{+})}{N_{\text{total}}(D^{-})}$$

- If CP is conserved, $S_{_{CP}}$ are normal (µ=0, σ =1).
- Factor $\boldsymbol{\alpha}$ removes any **global**

1110.3970v1 [PRD84, 112008 (2011)]

The method would be sensitive to CP violating • phase difference of 5° in $\Phi\pi^+$ at 90% CL, and • magnitude difference of 11% in $\kappa(800)K^+$ at 3 σ .

But none of these discrepancies have been found

Search for CPV in $D^{0} \rightarrow \pi^{-}\pi^{+}\pi^{+}\pi^{-}$ decays at LHCb

- Model independent analysis
- •Using CF D \rightarrow K π π π as control channel
 - Branching ratio ~10 times larger
 - Useful to study detector and production asymmetries
- Compare bins across phase space

Same method as the 3-body search

$$S_{CP}^{k} = \frac{N_{k} - \alpha \bar{N}_{k}}{\sqrt{N_{k} + \alpha^{2} \bar{N}_{k}}} \qquad \alpha = \frac{N_{\text{total}}}{\bar{N}_{\text{total}}}$$

- Factor α removes any **global** asymmetries
- Adaptive binning is chosen such that all bins contain at least 100 entries.
- If CP is conserved, S_{CP} are normal (µ=0, σ =1). Compute p-values using $\chi^2 = \sum (S_{CP}^k)^2$

Minimize dectector/production asymmetries:

- •Use equal amounts of magnet up and down data
- Apply fiducial cuts to areas with large asymmetry
- Apply 2-dimension re-weighting in $D^0 \eta$ and p_t to force same amount as in $\overline{D^0}$.

Selection:

- Rectangular cuts to reconstruct candidates
- Neural network to select signal candidates
 - Same NN used to select control channel

Sensitivity obtained from toy study

- Events generated with FOCUS model
- Forced relative phase or magnitude difference between D^0 and \overline{D}^0 .

The method is sensitive to CP violating

• phase difference of $O(10^{\circ})$ in $\rho\rho$, and

• magnitude difference of O(10%) in κ (800)K⁺ at 3 σ .

No discrepancies have been observed

$N_{ m bins}$	p-values (%)
15	97.1
29	95.6
66	99.8

Jordi Garra Ticó - ICHEP 2012 - Studies of charm mixing and CPV at LHCb

Conclusions

- LHCb has searched for
 - y_{CP} and A_{Γ} in 2-body charm decays.
 - CPV in
 - $D^0 \rightarrow h^+ h^-$ decays.
 - − $D^+ \rightarrow K^-K^+\pi^+$ decays.
 - $D^0 \rightarrow \pi^- \pi^+ \pi^+ \pi^-$ decays.
- First model-independent search for local CPV in a charm 4-body decay.
- Used data-driven techniques to keep detection/production asymmetries under control.
- Sensitivity to charm CPV in LHCb is becoming very exciting.
- Measurement of charm mixing in LHCb very promising.