Spin Correlation and W Helicity in Top Events with ATLAS

Markus Jüngst on behalf of the ATLAS collaboration

36th International Conference on High Energy Physics 4 - 11 July 2012

Motivation

- Sensitive test of perturbative QCD and the SM prediction of top-quark decays
 - understanding of important background for many BSM and SM Higgs searches
 - \blacksquare as decays before hadronisation (lifetime $5 \cdot 10^{-25}$ s) it gives access to a bare quark
- Top quark events are produced (mostly gg-fusion) in abundance at the LHC
 - allows precision measurements of several SM quantities
 - can also be used for calibration (e.g. b-tagging)
- Some of the most basic quantities of the elementary particles are their mass (lifetime), charge and spin and also their couplings

Polarisation Power

• Spin information can be accessed via the angular momentum of the top quark decay products $\Theta = I, q$

$$\frac{1}{N}\frac{dN}{d\cos(\theta_i)} = \frac{1}{2}\left[1 + \alpha_i\cos(\theta_i)\right] \qquad \mathbf{t}$$

• Amount of spin information a daughter particle carries from the parent top is encoded in α_i

	b-quark	W ⁺	+	d/s quark	u/c quark
α(LO)	-0.41	0.41			-0.31
α(NLO)	-0.39	0.39	0.998	0.93	-0.3 I

- Largest fractions are carried by leptons and down-type quarks
 - dilepton channel: simple to tag leptons, but event reconstruction required to define spin basis
 - lepton+jets channel: event reconstruction less challenging but critical to tag the down-type quark with high efficiency

Spin Correlation

- Short lifetime →can access spin via decay particles
- Strength of the correlation may differ for BSM models (e.g. H⁺ contribution)
- For spin-1/2 top particles two states possible \rightarrow ¹S₀ and ³S₁

- In gg-fusion at threshold top pair produced in ${}^{I}S_0$ state (t_Lt_L and t_Rt_R)
 - at high energies dominant production is 3S_1 state (t_Lt_R and t_Rt_L)
- In qq-annihilation produced in ³S₁ state
- Asymmetry parameter, A, describing difference between like and unlike spin

configuration depends on quantization axis

$$A = \frac{N_{like} - N_{unlike}}{N_{like} + N_{unlike}} = \frac{N(\uparrow \uparrow) + N(\downarrow \downarrow) - N(\uparrow \downarrow) - N(\downarrow \uparrow)}{N(\uparrow \uparrow) + N(\downarrow \downarrow) + N(\uparrow \downarrow) + N(\downarrow \uparrow)}$$

 $\frac{1}{\sigma} \frac{d^2 \sigma}{d\cos \theta_1 d\cos \theta_2} = \frac{1}{4} (1 - C\cos \theta_1 \cos \theta_2)$ where $C = A\alpha_1 \alpha_2$

- At the LHC no axis for 100% correlation
 - for helicity basis A is predicted to be $A_{hel} \approx 0.326$
- Markus Jüngst complementary to Tevatron measurement

Template Fit

Phys. Rev. Lett. 108, 212001 (2012)

- In dilepton channel almost 100% of correlation carried by the two leptons
- Opening angle between leptons carry information about spin correlation

G. Mahlon and S. Parke, Phys. Rev. D81 (2010) 074024

 Template fit separately performed for the three dilepton channels and in a combined fit

$$f^{SM} = N_{SM}/(N_{SM} + N_{UC})$$

 $A^{SM} = A^{SM}_{theo} \cdot f_{SM}$

 Combined result gives correction factor of f=1.30 to the input SM correlation

Results

Phys. Rev. Lett. 108, 212001 (2012)

- Figures show control plots for best fit and scaling parameter transformed to helicity parameter
- Main systematics arising from JES and shape of background (fakes) templates

(best fit with scaling applied)

The data are **inconsistent with zero** (or negative) spin correlation with a significance of **5 standard deviations**

[→]first observation of spin correlation!

Helicity

- Top quarks decay as left-handed fermions through the V-A weak interaction
- Helicity of W boson in the decay is constraint to 0, +1,-1 (massive particles have 2S+1 states)
- Angular momentum conservation → only left handed and longitudinal W helicity configuration allowed

• The relative fractions of the three contributions $(F_0, F_L \text{ and } F_R)$:

		SM prediction
Negative helicity:	$F_L = \Gamma(t \rightarrow W_{(h=-1)}b)/\Gamma(t \rightarrow Wb)$	~ 30 %
Zero helicity:	$F_0 = \Gamma(t \rightarrow W_{(h=0)}b)/\Gamma(t \rightarrow Wb)$	~ 70%
Positive helicity:	$F_R = \Gamma(t \rightarrow W_{(h=+1)}b)/\Gamma(t \rightarrow Wb)$	~ 0 %
	$F_L + F_0 + F_R = I$	

Sensitivity to anomalous (non-SM) couplings

W-Helicity Templates

arXiv: I 205.2484v I

- The Wtb vertex is defined by the electroweak interaction and has V-A structure
- W bosons are produced as real particles \rightarrow polarisation can be longitudinal-, left-

and right-handed

- Solution 0.16 ATLAS Simulation single lepton channels F_0 template F_R templa
- angle between lepton and negative top quark direction
- Two different methods used:
 - I. template fit using distributions for different signal and background contributions
 - 2. counting events after bkg subtraction above and below $z=\pm(1-2^{2/3})$ in unfolded distribution

$$A_z = \frac{N(\cos \theta^* > z) - N(\cos \theta^* < z)}{N(\cos \theta^* > z) + N(\cos \theta^* < z)}$$

Helicity - Combined Results

arXiv:1205.2484v1

 Results of four measurements combined using BLUE method:

	Combined Result	NNLO
F ₀	0.67±0.03 (stat+syst)	0.687±0.005
FL	0.32±0.02 (stat+syst)	0.311±0.005
F _R	-0.01±0.01 (stat+syst)	0.0017±0.0001

 Main systematics from lepton ID, JES and from method-specific uncertainties

No significant deviations from NNLO QCD predictions observed supporting the model of a **pure V-A structure** of the Wtb vertex

→ Most precise measurement of hel. fractions!

Effective Lagrangian

arXiv:1205.2484v1

New physics can be parametrized in terms of an effective Lagrangian (above the electroweak symmetry breaking scale of v=246 GeV)

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \, \gamma^{\mu} \left(V_{L} P_{L} + V_{R} P_{R} \right) t \, W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \, \frac{i \sigma^{\mu\nu} q_{\nu}}{M_{W}} \left(g_{L} P_{L} + g_{R} P_{R} \right) t \, W_{\mu}^{-} + \text{h.c.} \,,$$

where

Markus Jüngst

J. A. Aguilar-Saavedra, Nucl. Phys. B 812 (2009) 181 J. A. Aguilar-Saavedra, Nucl. Phys. B 821 (2009) 215

$$V_{\rm L} = V_{tb} + C_{\phi q}^{(3,3+3)} \frac{v^2}{\Lambda^2}, \qquad V_{\rm R} = \frac{1}{2} C_{\phi \phi}^{33*} \frac{v^2}{\Lambda^2}, \qquad g_{\rm L} = \sqrt{2} C_{dW}^{33*} \frac{v^2}{\Lambda^2}, \qquad g_{\rm R} = \sqrt{2} C_{uW}^{33} \frac{v^2}{\Lambda^2}.$$

- couplings V_R , g_L and G_R absent in the SM at tree-level
- Measured limits at 95 % CL are:

$$\operatorname{Re}(V_{R}) \in [-0.20, 0.23] \to \frac{\operatorname{Re}(C_{\phi\phi}^{33})}{\Lambda^{2}} \in [-6.7, 7.8] \quad \text{TeV}^{-2}$$

$$\operatorname{Re}(g_{L}) \in [-0.14, 0.11] \to \frac{\operatorname{Re}(C_{dW}^{33})}{\Lambda^{2}} \in [-1.6, 1.2] \quad \text{TeV}^{-2}$$

$$\operatorname{Re}(g_{R}) \in [-0.08, 0.04] \to \frac{\operatorname{Re}(C_{uW}^{33})}{\Lambda^{2}} \in [-1.0, 0.5] \quad \text{TeV}^{-2}$$

$$\frac{\text{Re}(C_{uW}^{33})}{\Lambda^2} \in [-0.9, 2.3] \text{ TeV}^{-2} \text{ (F_L=0)}$$

(2D limit assuming $V_R=0$)

Summary

• Top physics (at the LHC) provides the possibility to test the SM in various ways

- Two analysis from top properties presented:
 - 1. "Observation of spin correlation in tt events from pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector"
 - 2. "Measurement of the W boson polarization in top quark decays with the ATLAS detector"

- No significant deviation from SM prediction observed
 - I. hypothesis of zero spin correlation excluded with 5 sigma
 - 2. helicity measurements supports model of pure V-A Wtb vertex structure

Thanks for your attention!

Backup

The Usual Pictures

- Will present analyses with 2.1/1 fb⁻¹
- •Both using 7 TeV (we have 8 TeV in 2012)

tt Selection

 Single lepton and dilepton events selected by lepton triggers and require to have a good primary vertex (at least 5 tracks associated to it)

One lepton

$$-p_T > 25 (20) \text{ GeV}$$

 $-|\eta|$ < 2.5 (and transition cuts for e)

At least four Jets (anti-kt R=0.4)

$$-|\eta| < 2.5$$

Background Rejection

-(e):
$$E_T^{Miss}$$
>35 GeV and m_T^W >25

 $-(\mu)$: ETMiss>20 GeV and

Two oppositely charged leptons

$$-p_T > 20 (25) \text{ GeV}$$

$$-|\eta|$$
 < 2.5 (2.47 and transition cuts)

At least two Jets (anti-kt R=0.4)

$$-|\eta| < 2.5$$

Background Rejection

-(ee,
$$\mu\mu$$
): $E_T^{Miss}>60$ GeV, $m_{II}>15$ GeV

and
$$|m_{\parallel}-m_{Z}|>10$$
 GeV

$$-(e\mu)$$
: H_T>130 GeV

-(TI):
$$E_T^{Miss}$$
>60 GeV, H_T >150 GeV and

$$|m_{TI}-m_Z|>10 \text{ GeV}$$

Event Reconstruction

- To associate reconstructed objects to truth partons and to determine event kinematic full event reconstruction necessary
 - for some analysis like W helicity or spin correlation reference frame has to be defined for boosting
- In lepton+jets channel missing information (z-component) of the neutrino can be reconstructed using MET and constraints from know top and W masses
- For more clean dilepton environment system is under constraint and in general several solutions exist

Lepton+Jets	Dilepton
Neutrino momentum unknown Juse constraints from I. transverse momentum (MET) 2. Top mass 3. W mass (and additional input from b-tagging for jet-permutations) Use chi2 minimization or kinematic likelihood fit to find best solution $\chi^2 = \frac{(m_{\ell\nu j_a} - m_t)^2}{\sigma_t^2} + \frac{(m_{j_b j_c j_d} - m_t)^2}{\sigma_t^2} + \frac{(m_{\ell\nu} - m_W)^2}{\sigma_W^2} + \frac{(m_{j_c j_d} - m_W)^2}{\sigma_W^2}$	Two neutrino momenta unknown \rightarrow same constraints as for lepton+jets Up to four remaining solutions due to under-constraint system $p_x^{\nu_1} + p_x^{\nu_2} = E_x,$ Take solution with minimal product of neutrino momenta $(p_{\ell_1} + p_{\nu_1})^2 = m_W^2,$ $(p_{\ell_2} + p_{\nu_2})^2 = m_W^2,$ Alternative is ME $(p_{W_1} + p_{j_1})^2 = m_t^2,$ approach $(p_{W_2} + p_{j_2})^2 = m_t^2.$

Background Estimate

- Due to cut on two good leptons main background is from Z decay or from events with at least one fake lepton
- To evaluate the Z/Y^* +jets background the MC prediction for the number of events in the SR is normalized to the data using the events measured in CR $(|m_{\parallel}-m_{Z}|<10 \text{ GeV and } E_{T}^{Miss}>30 (35) \text{ GeV})$
- The yield of fake leptons is determined from data using a matrix-method (put dileptons into four categories using loose and tight definitions for both leptons)

Background Enriched Control Plots

- Control plots for background enriched (mainly DY) region
 - ETMiss for events with at least two jets for ee inside the Z mass window
 - Number of jets with same Z mass window cut and ETMiss<60 GeV
 - Invariant dilepton mass for events with at least two jets and ETMiss< 60 GeV

Spin Basis

- Number of unlike spin combinations of the top pair depends on choice of spin basis
- Spin correlation strength (A) depends on collision energy
- For Tevatron off-diagonal basis is best choice, where up to 90 % of top pairs have unlike-sign spin
- For LHC beam-line and off-diagonal basis have very poor strength
- Helicity (or more complicated maximal) basis provide possibility to extract spin correlation
- Center-of-mass dependence is not very large

Beam-Axis (Tevatron): NLO QCD: A = 0.78 Bernreuther, Brandenburg, Si, Uwer, Nucl. Phys. B690, 81 (2004)

Helicity-Axis (LHC): NLO QCD:A = 0.32 Uwer, Phys. Lett., B609:271–276, 2005 Markus Jüngst

maximal basis requires matrix solving (eigenvectors of spin density matrix)

Spin Correlation - BSM

 Several BSM scenarios predict different top decay/production mechanisms yielding in a different spin polarization

Higgs, KK gravitons, Z', stop pairs, ...

charged Higgs, b', ...

Spin Correlation - Channels

Spin Correlation - Systematics

Uncertainty source	$\Delta f^{ m SM}$
Data statistics	± 0.14
MC simulation template statistics	± 0.09
Luminosity	± 0.01
Lepton	± 0.01
Jet energy scale, resolution and efficiency	± 0.12
NLO generator	± 0.08
Parton shower and fragmentation	± 0.08
ISR/FSR	± 0.07
PDF uncertainty	± 0.07
Top quark mass	± 0.01
Fake leptons	+0.16/-0.07
Calorimeter readout	± 0.01
All systematics	+0.27/-0.22
Statistical + Systematic	+0.30/-0.26

Helicity - Asymmetry Method

- Extracting information about the polarization states of the W bosons evaluating angular asymmetries $A_z = \frac{N(\cos \theta^* > z) N(\cos \theta^* < z)}{N(\cos \theta^* > z) + N(\cos \theta^* < z)}$
- For z=0 this transforms into forward-backward asymmetry which is directly related to the helicity fractions by $A_{\rm FB} = \frac{3}{4}[F_{\rm R} F_{\rm L}]$
- Using the normalization constraint it is possible to define two independent asymmetries which fully constrain the three fractions (with $\beta = 2^{1/3} 1$)

$$F_{R} = \frac{1}{1 - \beta} + \frac{A_{\beta} - A_{-\beta}}{3\beta(1 - \beta^{2})}$$

$$F_{L} = \frac{1}{1 - \beta} - \frac{A_{-\beta} - A_{\beta}}{3\beta(1 - \beta^{2})}$$

$$F_{0} = -\frac{1 + \beta}{1 - \beta} + \frac{A_{\beta} - A_{-\beta}}{3\beta(1 - \beta^{2})}$$

• This provides an alternative method to extract helicity fractions

W Helicity - Systematics

Source	Uncertainties			
	F_0	$F_{ m L}$	$F_{ m R}$	
Signal and background modelling				
Generator choice	0.012	0.009	0.004	
ISR/FSR	0.015	0.008	0.007	
PDF	0.011	0.006	0.006	
Top quark mass	0.016	0.009	0.008	
Misidentified leptons	0.020	0.013	0.007	
W+jets	0.016	0.008	0.008	
Other backgrounds	0.006	0.003	0.003	
Method-specific uncertainties	0.031	0.016	0.035	
Detector modelling				
Lepton reconstruction	0.013	0.006	0.007	
Jet energy scale	0.026	0.014	0.012	
Jet reconstruction	0.012	0.005	0.007	
b-tagging	0.007	0.003	0.004	
Calorimeter readout	0.009	0.005	0.004	
Luminosity and pileup	0.009	0.004	0.005	
Total systematic uncertainty	0.06	0.03	0.04	