A proposal to solve some puzzles in charmed semileptonic B decays

```
Phys.Rev. D85 (2012) 094033 or arXiv:1202.1834
```

Florian U. Bernlochner ${ }^{1}$, Zoltan Ligeti ${ }^{2}$, Sascha Turczyk ${ }^{2}$
florian.bernlochner@cern.ch
${ }^{1}$ University of Victoria, British Columbia, Canada
${ }^{2}$ Lawrence Berkeley National Laboratory, California, United States

July 5, 2012

ICHEP 2012
Melbourne Australia

Outline

[Illustration by F. Tackmann]
I. Introduction: Summary of the exp. and theo. situation
a Recap of incl. and excl. measurements
b Recap of the ' $1 / 2$ ' vs ' $3 / 2$ ' problem
II. Discovery of potential $2 S$ charmed state(s) by BABAR
III. Our Proposal and its Viability
IV. Prediction of $\Gamma\left(B \rightarrow D^{\prime(*)} \ell \bar{\nu}_{\ell}\right)$ using light-cone sum rules
V. Summary

I.a Experimental situation for $B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- BaBar and Belle: $1.1 \mathrm{ab}^{-1}$ at $\Upsilon(4 S)$
- $\approx 25 \%$ of all B decay semileptonic

Notation	$s^{\pi}{ }^{\pi}$	J^{P}	$m(\mathrm{GeV})$	$\Gamma(\mathrm{GeV})$
D	$\frac{1}{2}^{-}$	0^{-}	1.87	
D^{*}	$\frac{1}{2}^{-}$	1^{-}	2.01	
D_{0}^{*}	$\frac{1}{2}^{+}$	0^{+}	2.40	0.28
D_{1}^{*}	$\frac{1}{2}^{+}$	1^{+}	2.44	0.38
D_{1}	$\frac{3}{2}^{+}$	1^{+}	2.42	0.03
D_{2}^{*}	$\frac{3}{2}^{+}$	2^{+}	2.46	0.04
D^{\prime}	$\frac{1}{2}^{-}$	0^{-}	2.54	0.13
$D^{\prime *}$	$\frac{1}{2}^{-}$	1^{-}	2.61	0.09

- Most abundant $b \rightarrow c: \mathcal{B}\left(B^{+} \rightarrow X_{c} \ell^{+} \nu_{\ell}\right)=(10.92 \pm 0.16) \%$
X_{C} : charmed system; isospin averaged value from [HFAG]

- Major focus of experimental attention from B factories
- Inclusive X_{c} mass spectrum (not unfolded; $p_{l}^{*}>0.8$) [PRD81:032003]
- Presence of charm decays up to $\approx 3 \mathrm{GeV}$ (resolution 0.36 GeV)
- $D^{(*)}, D^{* *}, D^{\prime(*)} \leftrightarrow 1 S, 1 P, 2 S$

I.a Experimental situation for $B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

All values from [HFAG 2010]. For the values of $B \rightarrow D \pi \ell \bar{\nu}_{\ell}$ and $B \rightarrow D^{*} \pi \ell \bar{\nu}_{\ell}$ an uncertainty weighted average of both isospin modes was calculated assuming a 100% correlation between both values.
\Rightarrow 'Gap' of $(1.45 \pm 0.29) \%$ emerges which is not accounted for
Uses semi-inclusive $D^{(*)} \pi$ branching fractions; with measured $1 P D^{* *} \rightarrow D^{(*)} \pi \Rightarrow(1.28 \pm 0.29) \%$

I.b Theoretical situation of $B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- Comparable rates for the narrow and broad $D^{* *}$ states problematic:

$$
\left.\begin{array}{cl}
D_{0}^{*} \rightarrow D \pi & (0.41 \pm 0.08) \% \\
D_{1}^{*} \rightarrow D^{*} \pi & (0.45 \pm 0.09) \% \\
D_{1} \rightarrow D^{*} \pi & (0.43 \pm 0.03) \% \\
D_{2}^{*} \rightarrow D^{(*)} \pi & (0.41 \pm 0.03) \%
\end{array}\right\} \begin{gathered}
\text { broad states } \\
(0.86 \pm 0.12) \% \\
\text { narrow states } \\
(0.84 \pm 0.04) \%
\end{gathered}
$$

- Uraltsev's sum rule + covariant quark model estimate from [EPJ:C52975]

$$
\mathcal{B}\left(B^{+} \rightarrow D_{1 / 2=\text { broad }}^{* *} \ell^{+} \nu\right) / \mathcal{B}\left(B^{+} \rightarrow D_{3 / 2=\text { narrow }}^{* *} \ell^{+} \nu\right) \backsim 0.1-0.2
$$

i.e. clear dominance of narrow over broad.

- Experimental violation known as '1/2' vs '3/2' puzzle.
- Persistent $\backsim 2-3 \sigma$ difference between $\left|V_{c b}\right|$ from inclusive vs exclusive

$$
\left(\mathbf{4 1 . 9} \pm \mathbf{0 . 4}_{\text {exp. }} \pm \mathbf{0 . 6}_{\text {theo. }}\right) \times \mathbf{1 0}^{-\mathbf{3}} \quad \text { vs }\left(38.7 \pm 0.6_{\text {exp. }} \pm 0.5_{\text {theo. }}\right) \times 10^{-3}
$$ [ARNPS:201161119]

- Any connections?

II. Discovery of new charmed states at BABAR

- BaBar observed four new charmed states [PRD82:111101]:

The $m_{D^{*} \pi}$ mass distribution for $D(2550), D(2600), D(2750)$ is shown. $D(2760)$ reconstructed in $D \pi$ channel.

- Helicity angles of $D(2550)$ and $D(2600)$ helicity consistent with $2 S$:

Helicity angle from $D^{*} \rightarrow D \pi$ is defined as the angle between the primary pion and $\pi_{\text {slow }}$ from $D^{*} \rightarrow D \pi_{\text {slow }}$
(in the D^{*} rest frame)

- $D(2750)$ candidate for $1 D$ (Likely no relevant for semileptonic decays \rightarrow cf. Backup)

II. Strong decays of $2 S$ states $D^{\prime} \& D^{*}$

- Strong D^{\prime} and $D^{\prime *}$ decays:

$$
\begin{gathered}
2 S \rightarrow 1 S \\
\text { or } \\
2 S \rightarrow 1 P \rightarrow 1 S
\end{gathered}
$$

E.g. p-wave $+\pi \rightarrow 1 S$
s-wave $+\pi \quad \rightarrow 1 P_{\text {broad }}(\rightarrow 15$)
Mom. of the emitted pion $p_{\pi} \backsim 0.01-0.5 \mathrm{GeV}$
s-wave $+\pi \pi \rightarrow 1 S$
d-wave $+\pi \quad \rightarrow 1 P_{\text {narrow }}(\rightarrow 1 \mathrm{~S}$)
Signature s-wave: $D^{\prime(*)} \rightarrow D^{(*)} \pi \pi$
Signature p-wave: $D^{\prime(*)} \rightarrow D^{(*)} \pi$
More decays involving ρ and η in principle allowed

- Significant $2 S \rightarrow 1 P_{\text {broad }}$ cross feed plausible [PRD:83014009]

A selection of the allowed strong decays involving single or two pion emissions are illustrated.

III. Our Proposal and its Viability

Proposal Explore possibility that the sum of $D^{\prime(*)}$ rate is substantial,

$$
\mathcal{B}\left(B^{+} \rightarrow D^{\prime(*)} \ell^{+} \nu_{\ell}\right) \backsim \mathcal{O}(1 \%)
$$

and show that this can help resolve the problems mentioned earlier without giving rise to new ones
1 This is a big enough contribution to the sum over exclusive states to close the gap between inclusive and exclusive without e.g. introducing non-resonant $B^{+} \rightarrow D^{(*)} \pi \ell^{+} \nu_{\ell}$ contributions.
A large non-resonant rate at high $D^{*} \pi$ invariant mass would disagree with the inclusive lepton spectrum and the measured semi-exclusive $B^{+} \rightarrow D^{(*)} \pi \ell^{+} \nu_{\ell}$ rate
2 The $D^{\prime(*)}$ states can decay with one pion in an s-wave to members of the $s_{l}^{\pi}=\frac{1}{2}^{+}$states, and could thus enhance the observed decay rate to the $\frac{1}{2}^{+}$, and thus give rise to the ' $1 / 2^{\prime}$ vs ' $3 / 2^{\prime}$ puzzle.
3 With the relatively low mass of the $D^{\prime(*)}$ the lepton spectrum can stay quite hard, in agreement with the observations
4 The $\mathcal{B}\left(B^{+} \rightarrow D^{*} \pi \ell^{+} \nu_{\ell}\right)$ semi inclusive measurement is not in conflict with our hypothesis, since the decay of the $D^{\prime(*)}$ would yield two or more pions most of the time.
\Rightarrow full details in Phys.Rev. D85 (2012) 094033 or arXiv:1202.1834

IV. Prediction for $\Gamma\left(B^{+} \rightarrow D^{\prime(*)} \ell^{+} \nu_{\ell}\right)$

- $D^{\prime(*)}$ and $D^{(*)}$: identical quantum numbers
i.e. same formulae for decay rate and definitions of form factors
$\begin{aligned} \frac{\mathrm{d} \Gamma_{D^{\prime *}}}{\mathrm{~d} w} & =\frac{G_{F}^{2}\left|V_{c b}\right|^{2} m_{B}^{5}}{48 \pi^{3}} r^{3}(1-r)^{2} \sqrt{w^{2}-1}(w+1)^{2}\| \| \frac{\mathrm{d} \Gamma_{D^{\prime}}}{\mathrm{d} w}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2} m_{B}^{5}}{48 \pi^{3}} r^{3}(1+r)^{2}\left(w^{2}-1\right)^{3 / 2}[G(w)]^{2}, \| \\ & \times\left[1+\frac{4 w}{w+1} \frac{1-2 r w+r^{2}}{(1-r)^{2}}\right][F(w)]^{2},\end{aligned}$
where $r=m_{D^{\prime}(*)} / m_{B}$ and $w=v \cdot v^{\prime}$ denotes the recoil parameter, where v denotes the velocity of the B meson, and v^{\prime} of the $D^{\prime(*)}$.
- In $m_{b, c} \gg \Lambda_{Q C D}$ limit: 6 form factors \rightarrow single universal Isgur-Wise function $\zeta_{2}(w)$ i.e. $F(w)=G(w)=\zeta_{2}(w)$
- Heavy quark symmetry: $\zeta_{2}(w=1)=0$
\rightarrow Non-zero rate at zero recoil entirely due to $\Lambda_{\mathrm{QCD}} / m_{b, c}$ corrections
- For $w>1$ no power suppression, but low kinematic range of $1<w<1.3$ role of $\Lambda_{\mathrm{QCD}} / m_{b, c}$ corrections can be very large.
- Naive expectation: $\left.\frac{\mathrm{d} \zeta_{2}}{\mathrm{~d} w}\right|_{w=1}>0 \ln$ quark model main effect of wave function of the brown muck is to increase the expectation value of the distance from the heavy quark of a spherically symmetric wave function. Overlap of initial and final state wave functions should increase as w increases.

IV. The $B^{+} \rightarrow D^{\prime(*)} \ell^{+} \nu_{\ell}$ form factors

Not easy to calculate the $B^{+} \rightarrow D^{\prime(*)} \ell^{+} \nu_{\ell}$ form factors:
a Quark model [PRD:62:014032]
hoped to be trustable near $w=1$,
b Modify QCD light-cone sum rule calculation [PJC:60603]
hoped to be reasonable near max. recoil
But Both models were developed, tuned, and tested for states that are the lightest within a given set of quantum numbers, thus take prediction with truck load of salt. But even rough estimates can be helpful!

Quark Model form factors at $w=1$ and linear extrapolation to $w=1.05$:

IV. The $B^{+} \rightarrow D^{\prime(*)} \ell^{+} \nu_{\ell}$ form factors

Modify QCD light-cone sum rules so that the $2 S$ state can be projected out e.g. schematically for the decay constant

$$
\begin{aligned}
& \| \frac{m_{D}^{4} f_{D}^{2}}{m_{C}^{2}\left(m_{D}^{2}-q^{2}\right)}+\frac{m_{D^{\prime}}^{4} f_{D^{\prime}}^{2}}{m_{C}^{2}\left(m_{D^{\prime}}^{2}-q^{2}\right)}+\int_{s_{0}^{\prime}}^{\infty} d s \frac{\rho(s)}{s-q^{2}} . \mid \\
& \text { レ - - - - - - - - - - }
\end{aligned}
$$

where ρ is the spectral density function, and f_{D} and $f_{D^{\prime}}$ denote the $1 S$ and $2 S$ decay constant, respectively.
Modification of Borel transformation in [PJC:60603] non-trivial endeavor.
Form factors sensitive fo chosen decay constants, Borel, and duality parameters

Effect of variation on duality and Borel parameters in calculation

IV. Prediction for $\Gamma\left(B^{+} \rightarrow D^{\prime(*)} \ell^{+} \nu_{\ell}\right)$

Parametrize $F(w)$ and $G(w)$ which determine the $D^{\prime(*)}$ as quad. polynom. i.e.

$$
\begin{aligned}
& \bar{F}(w)=-\beta_{0}^{*}+(w-1) \beta_{1}^{*}+(w-1)^{2} \beta_{2}^{*} \\
& G(w)=\beta_{0}+(w-1) \beta_{1}+(w-1)^{2} \beta_{2} \\
&
\end{aligned}
$$

\Rightarrow Rough estimate for sum of two semileptonic $B^{+} \rightarrow D^{\prime(*)} \ell^{+} \nu_{\ell}$ decays:

$$
\mathcal{B}\left(B^{+} \rightarrow D^{\prime(*)} \ell^{+} \nu_{\ell}\right) \backsim(0.3-0.7) \%
$$

Earlier quark models without accounting for $\Lambda_{Q C D} / m_{b, c}$ effects obtained smaller rates, c.f.
[PRD:39799],[PTP:91757]. Including $\wedge_{\mathrm{QCD}} / m_{b, c}$ effects a value of 0.4% was obtained by [PRD:62:014032].
With a linear parametrization and the quark model result only:

$$
\mathcal{B}\left(B^{+} \rightarrow D^{\prime(*)} \ell^{+} \nu_{\ell}\right) \sim 1.4 \%
$$

We take this as an indication that a large radial contribution is plausible, and that $B^{+} \rightarrow D^{\prime(*)} \ell^{+} \nu_{\ell}$ may account for a substantial part of the observed 'Gap' between inclusive and exclusive decays.

V. Summary and Ideas

- Indication that hypothesis plausible and that $B \rightarrow D^{\prime(*)} \ell \bar{\nu}_{\ell}$ may account for a substantial part of the observed 'gap'.
- Interesting measurement for LHCb (or B-factories): $B \rightarrow D^{\prime(*)} \pi=\left[D^{(*)} \pi^{+} \pi^{-}\right] \pi^{-}$ Factorization [PRL:87201806] implies relation between these channels and semileptonic decay rate at $w_{\text {max }}$:
C combination of Wilson coefficients with $C\left|V_{u d}\right| \approx 1$, and $w_{\max }$ corresponds to $q^{2}=0 \simeq m_{\pi}^{2}$
- If future measurement find a $B \rightarrow D^{\prime(*)} \ell \bar{\nu}_{\ell}$ decay rate ...
the precise determination of the branching fraction and form factors would impact other measurements and the theory of semileptonic decays, e.g. it may yield a better understanding . . .
i. ... of $b \rightarrow c$ backgrounds and improve $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$
ii. ... missing exclusive contributions to inclusive $B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$
iii. ... of the measured $B \rightarrow D^{(*)} \tau \bar{\nu}_{\tau}$ and its tension with the SM

Further
iv. Help improve the measurements of the semileptonic branching fractions of the $s_{1}^{\pi}=\frac{1}{2}$ and $\frac{3}{2}$ states, thus maybe help resolving the ' $1 / 2$ ' vs ' $3 / 2$ ' puzzle
v. Help improve the sum rule bound on the $B \rightarrow D^{*} \ell \bar{\nu}_{\ell}$ form factor.

Thank you for your attention!

Backup

A. Prediction for $1 D$ from QCD sum rules

- QCD sum rule result of [PRD:79034025] suggests that $1 D$ contributions to the inclusive semileptonic decay rate are small

Decay	PRD:79034025	PLB:478408
$B \rightarrow D_{1}^{*} \ell \bar{\nu}_{\ell}$	6×10^{-6}	
$B \rightarrow D_{2}^{\prime} \ell \bar{\nu}_{\ell}$	6×10^{-6}	
$B \rightarrow D_{2} \ell \bar{\nu}_{\ell}$	1.5×10^{-4}	1×10^{-5}
$B \rightarrow D_{3}^{*} \ell \bar{\nu}_{\ell}$	2.1×10^{-4}	1×10^{-5}

The branching fractions for the four $1 D$ states are quoted. Note that the D_{1}^{*} is not identical with the $1 P$ state with the same name (which is sometimes denoted as D_{1}^{\prime} to avoid this confusion)

The Isgur-Wise functions for the $\frac{3}{2}$ and the $\frac{5}{2}$ $1 D$ doublets as a function of the recoil param. $y(=w)$ are shown.

