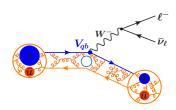
A proposal to solve some puzzles in charmed semileptonic *B* decays

Phys.Rev. D85 (2012) 094033 or arXiv:1202.1834

Florian U. Bernlochner¹, Zoltan Ligeti², Sascha Turczyk²

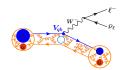
florian.bernlochner@cern.ch

¹University of Victoria, British Columbia, Canada ²Lawrence Berkeley National Laboratory, California, United States


July 5, 2012

ICHEP 2012 Melbourne Australia

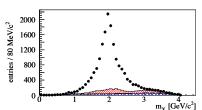
Outline



[Illustration by F. Tackmann]

- I. Introduction: Summary of the exp. and theo. situation
 - a Recap of incl. and excl. measurements
 - b Recap of the '1/2' vs '3/2' problem
- II. Discovery of potential 25 charmed state(s) by BABAR
- III. Our Proposal and its Viability
- IV. Prediction of $\Gamma(B \to D'^{(*)} \ell \bar{\nu}_{\ell})$ using *light-cone sum rules*
- V. Summary

I.a Experimental situation for $B o X_c \ell \bar{\nu}_\ell$


- BABAR and Belle: 1.1 ab^{-1} at $\Upsilon(4S)$
- $\approx 25\%$ of all B decay semileptonic

Notation	$s_l^{\pi_l}$	J ^P	m (GeV)	Γ (GeV)
D	1 -	0-	1.87	
D*	$\frac{1}{2}$ -	1^{-}	2.01	
D_0^*	1 + 2	0+	2.40	0.28
D_1^*	1/2 +	1+	2.44	0.38
D_1	3 +	1+	2.42	0.03
D_2^*	$\frac{3}{2}$ +	2^+	2.46	0.04
D'	1 -	0_	2.54	0.13
D'*	$\frac{1}{2}$ -	1-	2.61	0.09

- Most abundant $b \to c$: $\mathcal{B}(B^+ \to X_c \ell^+ \nu_\ell) = (10.92 \pm 0.16) \%$

 X_c : charmed system; isospin averaged value from [HFAG]

- Major focus of experimental attention from B factories
- Inclusive X_c mass spectrum (not unfolded; $p_l^* > 0.8$) [PRD81:032003]
- Presence of charm decays up to ≈ 3 GeV (resolution 0.36 GeV)
- $D^{(*)}$, D^{**} , $D'^{(*)} \leftrightarrow 1S$, 1P, 2S

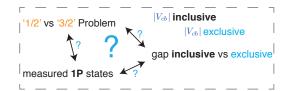
I.a Experimental situation for $B o X_c \ell \bar{\nu}_\ell$

Charm state X_c	$\mathcal{B}(B^+ \to X_c \ell^+ \nu)$	-
D	$(2.31 \pm 0.09)\%$	
D*	$(5.63 \pm 0.18)\%$	
$\sum D^{(*)}$	$(7.94 \pm 0.20)\%$	
$D_0^* o D \pi$	$(0.41 \pm 0.08)\%$	broad states
$D_1^* \rightarrow D^* \; \pi$	$(0.45 \pm 0.09)\%$	$(0.86 \pm 0.12)\%$
$\mathit{D}_1 \rightarrow \mathit{D}^* \pi$	$(0.43 \pm 0.03)\%$	narrow states
$\textit{D}_{2}^{*} \rightarrow \textit{D}^{(*)}\pi$	$(0.41 \pm 0.03)\%$	
$\sum D^{**} \rightarrow D^*\pi$	$(1.70\pm0.12)\%$	
$D \pi$	$(0.66 \pm 0.08)\%$	
D^* π	$(0.87 \pm 0.10)\%$	
$\sum D^*\pi$	$(1.53\pm0.13)\%$	
$\sum D^{(*)} + \sum D^* \pi$	$(9.47 \pm 0.24)\%$	
$\sum D^{(*)} + \sum D^{**} \to D^{(*)} \pi$	$(9.64 \pm 0.23)\%$	
Inclusive X_c	$(10.92 \pm 0.16)\%$	

All values from [HFAG 2010]. For the values of $B\to D~\pi~\ell~\bar{\nu}_\ell$ and $B\to D^*~\pi~\ell~\bar{\nu}_\ell$ an uncertainty weighted average of both isospin modes was calculated assuming a 100% correlation between both values.

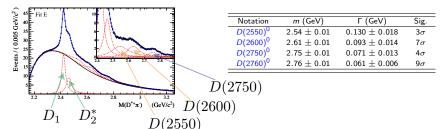
 \Rightarrow 'Gap' of (1.45 ± 0.29) % emerges which is not accounted for

Uses semi-inclusive $D^{(*)}\pi$ branching fractions; with measured 1P $D^{**}\to D^{(*)}\pi\Rightarrow$ (1.28 \pm 0.29) %

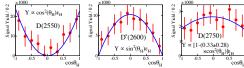

I.b Theoretical situation of $B \to X_c \ell \bar{\nu}_\ell$

- Comparable rates for the narrow and broad D^{**} states problematic:

- Uraltsev's sum rule + covariant quark model estimate from [EPJ:C52975] $\mathcal{B}(B^+ \to D_{1/2=\text{broad}}^{**} \, \ell^+ \, \nu)/\mathcal{B}(B^+ \to D_{3/2=\text{narrow}}^{**} \, \ell^+ \, \nu) \backsim 0.1 0.2$ i.e. clear dominance of narrow over broad.
- Experimental violation known as '1/2' vs '3/2' puzzle.
- Persistent $\sim 2-3\sigma$ difference between $|V_{cb}|$ from **inclusive** vs exclusive $(41.9 \pm 0.4_{\rm exp.} \pm 0.6_{\rm theo.}) \times 10^{-3}$ vs $(38.7 \pm 0.6_{\rm exp.} \pm 0.5_{\rm theo.}) \times 10^{-3}$


[ARNPS:201161119]

- Any connections?


II. Discovery of new charmed states at BABAR

- BABAR observed four new charmed states [PRD82:111101]:

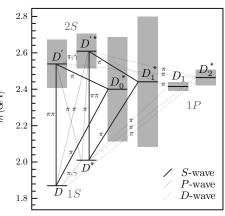
The $m_{D^*\pi}$ mass distribution for D(2550), D(2600), D(2750) is shown. D(2760) reconstructed in $D\pi$ channel.

- Helicity angles of D(2550) and D(2600) helicity consistent with 25:

Helicity angle from $D^* \to D\pi$ is defined as the angle between the primary pion and π_{slow} from $D^* \to D\pi_{slow}$ (in the D^* rest frame)

- D(2750) candidate for 1D (Likely no relevant for semileptonic decays ightarrow cf. Backup)

II. Strong decays of 2S states D' & D'^*


- Strong D' and D'^* decays:

$$2S \rightarrow 1S$$
or
$$2S \rightarrow 1P \rightarrow 1S$$

E.g.
$$p ext{-wave} + \pi \to 1S$$

 $s ext{-wave} + \pi \to 1P_{ ext{broad}} \ (\to 1S)$
Mom. of the emitted pion $p_\pi \backsim 0.01 - 0.5$ GeV
 $s ext{-wave} + \pi\pi \to 1S$
 $d ext{-wave} + \pi \to 1P_{ ext{narrow}} \ (\to 1S)$
Signature $s ext{-wave}$: $D'^{(*)} \to D^{(*)}\pi\pi$
Signature $p ext{-wave}$: $D'^{(*)} \to D^{(*)}\pi$

More decays involving ρ and η in principle allowed

 Significant 2S → 1P_{broad} cross feed plausible [PRD:83014009]

A selection of the allowed strong decays involving single or two pion emissions are illustrated.

III. Our Proposal and its Viability

Proposal Explore possibility that the sum of $D'^{(*)}$ rate is substantial,

$$\mathcal{B}(B^+ o \mathcal{D}'^{(*)} \ell^+ \nu_\ell) \backsim \mathcal{O}(1\%)$$

and show that this can help resolve the problems mentioned earlier without giving rise to new ones

1 This is a big enough contribution to the sum over exclusive states to close the gap between **inclusive** and exclusive without e.g. introducing **non-resonant** $B^+ \to D^{(*)} \pi \ell^+ \nu_\ell$ contributions.

A large non-resonant rate at high $D^*\pi$ invariant mass would disagree with the inclusive lepton spectrum and the measured semi-exclusive $B^+ \to D^{(*)} \pi \, \ell^+ \, \nu_\ell$ rate

- 2 The $D'^{(*)}$ states can decay with one pion in an *s*-wave to members of the $s_l^{\pi} = \frac{1}{2}^+$ states, and could thus enhance the observed decay rate to the $\frac{1}{2}^+$, and thus give rise to the '1/2' vs '3/2' puzzle.
- 3 With the relatively low mass of the $D'^{(*)}$ the lepton spectrum can stay quite hard, in agreement with the observations
- 4 The $\mathcal{B}(B^+ \to D^*\pi \, \ell^+ \, \nu_\ell)$ semi inclusive measurement is not in conflict with our hypothesis, since the decay of the $D'^{(*)}$ would yield two or more pions most of the time.

⇒ full details in Phys.Rev. D85 (2012) 094033 or arXiv:1202.1834

IV. Prediction for $\Gamma(B^+ \to D'^{(*)} \ell^+ \nu_\ell)$

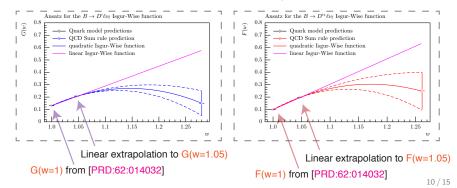
- $D'^{(*)}$ and $D^{(*)}$: identical quantum numbers

i.e. same formulae for decay rate and definitions of form factors

$$\frac{\mathrm{d}\Gamma_{D'^*}}{\mathrm{d}w} = \frac{G_F^2 |V_{cb}|^2 m_B^5}{48\pi^3} r^3 (1-r)^2 \sqrt{w^2-1} (w+1)^2 \left[\frac{\mathrm{d}\Gamma_{D'}}{\mathrm{d}w} = \frac{G_F^2 |V_{cb}|^2 m_B^5}{48\pi^3} r^3 (1+r)^2 (w^2-1)^{3/2} \left[G(w) \right]^2, \right] \times \left[1 + \frac{4w}{w+1} \frac{1-2rw+r^2}{(1-r)^2} \right] \left[F(w) \right]^2,$$

where $r = m_{D'(*)}/m_B$ and $w = v \cdot v'$ denotes the recoil parameter, where v denotes the velocity of the B meson, and v' of the D'(*).

- In $m_{b,c} \gg \Lambda_{\rm QCD}$ limit: 6 form factors \rightarrow single universal Isgur-Wise function $\zeta_2(W)$ i.e. $F(w) = G(w) = \zeta_2(w)$
- Heavy quark symmetry: $\zeta_2(w=1)=0$
 - ightarrow Non-zero rate at zero recoil entirely due to $\Lambda_{
 m QCD}/m_{b,c}$ corrections
- For w > 1 no power suppression, but low kinematic range of 1 < w < 1.3 role of $\Lambda_{\rm QCD}/m_{b,c}$ corrections can be very large.
- Naive expectation: $\frac{\mathrm{d} \zeta_2}{\mathrm{d} w}|_{w=1} > 0$ In quark model main effect of wave function of the brown muck is to increase the expectation value of the distance from the heavy quark of a spherically symmetric wave function. Overlap of initial and final state wave functions should increase as w increases.


IV. The $B^+ \to D'^{(*)} \ell^+ \nu_{\ell}$ form factors

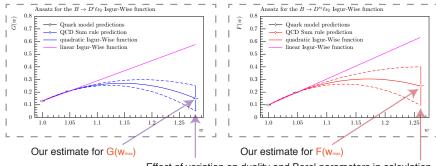
Not easy to calculate the $B^+ \to D'^{(*)} \ell^+ \nu_{\ell}$ form factors:

- a Quark model [PRD:62:014032] hoped to be trustable near w = 1.
- b Modify QCD light-cone sum rule calculation [PJC:60603] hoped to be reasonable near max. recoil

But Both models were developed, tuned, and tested for states that are the lightest within a given set of quantum numbers, thus take prediction with truck load of salt. But even rough estimates can be helpful!

Quark Model form factors at w = 1 and linear extrapolation to w = 1.05:

IV. The $B^+ \to D'^{(*)} \ell^+ \nu_\ell$ form factors


Modify QCD light-cone sum rules so that the 25 state can be projected out e.g. schematically for the decay constant

$$\left| \begin{array}{c} \frac{m_D^4 f_D^2}{m_C^2 (m_D^2 - q^2)} + \frac{m_D^4 f_{D'}^2}{m_C^2 (m_{D'}^2 - q^2)} + \int_{s_0^{D'}}^{\infty} \mathrm{d}s \frac{\rho(s)}{s - q^2} \end{array} \right|$$

where ρ is the spectral density function, and f_D and $f_{D'}$ denote the 1S and 2S decay constant, respectively.

Modification of Borel transformation in [PJC:60603] non-trivial endeavor.

Form factors sensitive fo chosen decay constants, Borel, and duality parameters

IV. Prediction for $\Gamma(B^+ \to D'^{(*)} \ell^+ \nu_\ell)$

Parametrize F(w) and G(w) which determine the $D'^{(*)}$ as quad. polynom. i.e.

$$F(w) = \beta_0^* + (w - 1)\beta_1^* + (w - 1)^2 \beta_2^*,$$

$$G(w) = \beta_0 + (w - 1)\beta_1 + (w - 1)^2 \beta_2.$$

 \Rightarrow Rough estimate for sum of two semileptonic $B^+ \to D'^{(*)} \ell^+ \nu_{\ell}$ decays:

$$\mathcal{B}(B^+ \to D'^{(*)} \, \ell^+ \, \nu_\ell) \backsim (0.3 - 0.7) \%$$

Earlier quark models without accounting for $\Lambda_{\rm QCD}/m_{b,c}$ effects obtained smaller rates, c.f.

[PRD:39799], [PTP:91757]. Including $\Lambda_{\rm QCD}/m_{b,c}$ effects a value of 0.4% was obtained by [PRD:62:014032].

With a linear parametrization and the quark model result only:

$$\mathcal{B}(B^+ o D'^{(*)}\,\ell^+\,
u_\ell)\sim 1.4\,\%$$

We take this as an indication that a large radial contribution is plausible, and that $B^+ \to D'^{(*)} \, \ell^+ \, \nu_\ell$ may account for a substantial part of the observed 'Gap' between inclusive and exclusive decays.

V. Summary and Ideas

- Indication that hypothesis plausible and that B → D'(*) ℓ v̄_ℓ may account for a substantial part of the observed 'gap'.
- Interesting measurement for LHCb (or *B*-factories): $B \to D'^{(*)} \pi = [D^{(*)} \pi^+ \pi^-] \pi^-$ Factorization [PRL:87201806] implies relation between these channels and semileptonic decay rate at w_{max} :

$$|\Gamma(B \to D'^{(*)} \pi) = \frac{3\pi^2 C^2 |V_{ud}|^2 f_{\pi}^2}{m_B m_{D'}(*)} \frac{d\Gamma(B \to D'^{(*)} \ell \bar{\nu}_{\ell})}{dw} \Big|_{w = w_{\text{max}}}$$

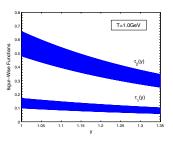
C combination of Wilson coefficients with C $|V_{ud}| \approx$ 1, and w_{\max} corresponds to $q^2 = 0 \backsimeq m_\pi^2$

- If future measurement find a $B \to D'^{(*)} \ell \bar{\nu}_\ell$ decay rate ... the precise determination of the branching fraction and form factors would impact other measurements and the theory of semileptonic decays, e.g. it may yield a better understanding . . .
 - i. ... of $b \rightarrow c$ backgrounds and improve $|V_{ub}|$ and $|V_{cb}|$
 - ii. ... missing exclusive contributions to **inclusive** $B \to X_c \ell \bar{\nu}_\ell$
 - iii. ... of the measured $B \to D^{(*)} \, \tau \, \bar{\nu}_{\tau}$ and its tension with the SM

Further

- iv. Help improve the measurements of the semileptonic branching fractions of the $s_l^{\pi} = \frac{1}{2}$ and $\frac{3}{2}$ states, thus maybe help resolving the '1/2' vs '3/2' puzzle
- v. Help improve the sum rule bound on the $B \to D^* \ell \bar{\nu}_{\ell}$ form factor.

Thank you for your attention!


Backup

A. Prediction for 1D from QCD sum rules

 QCD sum rule result of [PRD:79034025] suggests that 1D contributions to the inclusive semileptonic decay rate are small

Decay	PRD:79034025	PLB:478408
$B o D_1^* \ell \bar{\nu}_\ell$	6×10^{-6}	
$B \to D_2' \ell \bar{\nu}_\ell$	6×10^{-6}	
$B o D_2 \ell \bar{ u}_\ell$	1.5×10^{-4}	1×10^{-5}
$B o D_3^* \ell \bar{\nu}_\ell$	2.1×10^{-4}	1×10^{-5}

The branching fractions for the four ${\bf 1D}$ states are quoted. Note that the D_1^* is not identical with the ${\bf 1P}$ state with the same name (which is sometimes denoted as D_1' to avoid this confusion)

The Isgur-Wise functions for the $\frac{3}{2}$ and the $\frac{5}{2}$ 1D doublets as a function of the recoil param. y~(=w) are shown.