Generalized Galileons
for
Particle Physics & Cosmology

Mark Trodden
Center for Particle Cosmology
University of Pennsylvania
Motivations
Motivations

• Scalar fields appear useful in particle physics and are ubiquitous in cosmology
Motivations

- Scalar fields appear useful in particle physics and are ubiquitous in cosmology.
- Used to break the electroweak symmetry, solve the strong CP problem, inflate the universe, accelerate it at late times, ...
Motivations

• Scalar fields appear useful in particle physics and are ubiquitous in cosmology

• Used to break the electroweak symmetry, solve the strong CP problem, inflate the universe, accelerate it at late times, ...

• In most incarnations, the sweet properties of these scalars are offset by their tendency to be most unruly in the face of quantum mechanics.
Motivations

• Scalar fields appear useful in particle physics and are ubiquitous in cosmology

• Used to break the electroweak symmetry, solve the strong CP problem, inflate the universe, accelerate it at late times, ...

• In most incarnations, the sweet properties of these scalars are offset by their tendency to be most unruly in the face of quantum mechanics.

• Attempts to do away with scalars for some of these tasks, such as modifying gravity, often yield scalars in any case, in limits, or as part of the construction.
Motivations

• Scalar fields appear useful in particle physics and are ubiquitous in cosmology

• Used to break the electroweak symmetry, solve the strong CP problem, inflate the universe, accelerate it at late times, ...

• In most incarnations, the sweet properties of these scalars are offset by their tendency to be most unruly in the face of quantum mechanics.

• Attempts to do away with scalars for some of these tasks, such as modifying gravity, often yield scalars in any case, in limits, or as part of the construction.

• Galileons and higher-derivative theories in general, are an intriguing class of scalars that may have a shot at addressing some of these problems, and perhaps most interestingly, are tied to attempts to modify gravity such as massive gravity!
Motivations

• Scalar fields appear useful in particle physics and are ubiquitous in cosmology.

• Used to break the electroweak symmetry, solve the strong CP problem, inflate the universe, accelerate it at late times, ...

• In most incarnations, the sweet properties of these scalars are offset by their tendency to be most unruly in the face of quantum mechanics.

• Attempts to do away with scalars for some of these tasks, such as modifying gravity, often yield scalars in any case, in limits, or as part of the construction.

• Galileons and higher-derivative theories in general, are an intriguing class of scalars that may have a shot at addressing some of these problems, and perhaps most interestingly, are tied to attempts to modify gravity such as massive gravity!

• We’ll see - too early to know if these will be useful or not - but it is turning out to be great fun trying.
The Decoupling Limit (of, e.g. DGP)
The Decoupling Limit (of, e.g. DGP)

\[S = \frac{M_5^3}{2r_c} \int d^5x \sqrt{-G} \ R^{(5)} + \frac{M_4^2}{2} \int d^4x \sqrt{-g} \ R \]
The Decoupling Limit (of, e.g. DGP)

\[
S = \frac{M_5^3}{2 r_c} \int d^5 x \sqrt{\text{\textit{\textit{G}}}} \, R^{(5)} + \frac{M_4^2}{2} \int d^4 x \sqrt{\text{\textit{\textit{g}}}} \, R
\]

Much of interesting phenomenology of DGP captured in the \textit{decoupling limit}:
The Decoupling Limit (of, e.g. DGP)

\[
S = \frac{M_5^3}{2r_c} \int d^5 x \sqrt{-G} \, R^{(5)} + \frac{M_4^2}{2} \int d^4 x \sqrt{-g} \, R
\]

Much of interesting phenomenology of DGP captured in the decoupling limit:

\[M_4, \ M_5 \rightarrow \infty \]

\[\Lambda \equiv \frac{M_5^3}{M_4^2} \]

kept finite
The Decoupling Limit (of, e.g. DGP)

\[S = \frac{M_5^3}{2r_c} \int d^5x \sqrt{-G} \ R^{(5)} + \frac{M_4^2}{2} \int d^4x \sqrt{-g} \ R \]

Much of interesting phenomenology of DGP captured in the decoupling limit:

\[M_4, \ M_5 \to \infty \quad \Lambda \equiv \frac{M_5^3}{M_4^2} \quad \text{kept finite} \]

Only a single scalar field - the brane bending mode - remains
The Decoupling Limit (of, e.g. DGP)

\[S = \frac{M_5^3}{2r_c} \int d^5 x \sqrt{-G} \, R^{(5)} + \frac{M_4^2}{2} \int d^4 x \sqrt{-g} \, R \]

Much of interesting phenomenology of DGP captured in the \textit{decoupling limit}:

\[M_4, \; M_5 \rightarrow \infty \quad \quad \quad \Lambda \equiv \frac{M_5^3}{M_4^2} \quad \text{kept finite} \]

Only a single scalar field - the brane bending mode - remains

Very special symmetry, inherited from combination of:

\begin{itemize}
 \item 5d Poincare invariance, and
 \item brane reparameterization invariance
\end{itemize}
The Decoupling Limit (of, e.g. DGP)

\[S = \frac{M_5^3}{2r_c} \int d^5 x \sqrt{-G} \ R^{(5)} + \frac{M_4^2}{2} \int d^4 x \sqrt{-g} \ R \]

Much of interesting phenomenology of DGP captured in the decoupling limit:

\[M_4, M_5 \to \infty \quad \Lambda \equiv \frac{M_5^3}{M_4^2} \quad \text{kept finite} \]

Only a single scalar field - the brane bending mode - remains

Very special symmetry, inherited from combination of:

- 5d Poincare invariance, and
- brane reparameterization invariance

\[\pi(x) \to \pi(x) + c + b_\mu x^\mu \]

The Galilean symmetry!
Galileons

Can consider this symmetry as interesting in its own right
• Yields a novel and fascinating 4d effective field theory
• Relevant field referred to as the Galileon

(Nicolis, Rattazzi, & Trincherini 2009)
Galileons

Can consider this symmetry as interesting in its own right

• Yields a novel and fascinating 4d effective field theory
• Relevant field referred to as the Galileon

(Nicolis, Rattazzi, & Trincherini 2009)

\[\mathcal{L}_1 = \pi \quad \mathcal{L}_2 = (\partial \pi)^2 \quad \mathcal{L}_3 = (\partial \pi)^2 \Box \pi \]

\[\mathcal{L}_{n+1} = n \eta_{\mu_1 \nu_1} \mu_2 \nu_2 \cdots \mu_n \nu_n \left(\partial_{\mu_1} \pi \partial_{\nu_1} \pi \partial_{\mu_2} \partial_{\nu_2} \pi \cdots \partial_{\mu_n} \partial_{\nu_n} \pi \right) \]
Galileons

Can consider this symmetry as interesting in its own right
• Yields a novel and fascinating 4d effective field theory
• Relevant field referred to as the Galileon
 (Nicolis, Rattazzi, & Trincherini 2009)

\[\mathcal{L}_1 = \pi \quad \mathcal{L}_2 = (\partial \pi)^2 \quad \mathcal{L}_3 = (\partial \pi)^2 \Box \pi \]
\[\mathcal{L}_{n+1} = n\eta^{\mu_1 \nu_1 \mu_2 \nu_2 \ldots \mu_n \nu_n} (\partial_{\mu_1} \pi \partial_{\nu_1} \pi \partial_{\mu_2} \partial_{\nu_2} \pi \ldots \partial_{\mu_n} \partial_{\nu_n} \pi) \]

There is a separation of scales
Galileons

Can consider this symmetry as interesting in its own right

- Yields a novel and fascinating 4d effective field theory
- Relevant field referred to as the **Galileon**

(Nicolis, Rattazzi, & Trincherini 2009)

\[\mathcal{L}_1 = \pi \quad \mathcal{L}_2 = (\partial \pi)^2 \quad \mathcal{L}_3 = (\partial \pi)^2 \Box \pi \]

\[\mathcal{L}_{n+1} = n \eta^{\mu_1 \nu_1 \mu_2 \nu_2 \cdots \mu_n \nu_n} (\partial_{\mu_1} \pi \partial_{\nu_1} \pi \partial_{\mu_2} \partial_{\nu_2} \pi \cdots \partial_{\mu_n} \partial_{\nu_n} \pi) \]

There is a separation of scales

- Allows for classical field configurations with order one nonlinearities, but quantum effects under control.
Can consider this symmetry as interesting in its own right

- Yields a novel and fascinating 4d effective field theory
- Relevant field referred to as the *Galileon*
 \[(\text{Nicolis, Rattazzi, & Trincherini } 2009)\]

\[
\begin{align*}
\mathcal{L}_1 &= \pi \\
\mathcal{L}_2 &= (\partial \pi)^2 \\
\mathcal{L}_3 &= (\partial \pi)^2 \Box \pi \\
\mathcal{L}_{n+1} &= n \eta^{\mu_1 \nu_1 \mu_2 \nu_2 \cdots \mu_n \nu_n} (\partial_{\mu_1} \pi \partial_{\nu_1} \pi \partial_{\mu_2} \partial_{\nu_2} \pi \cdots \partial_{\mu_n} \partial_{\nu_n} \pi)
\end{align*}
\]

There is a separation of scales

- Allows for classical field configurations with order one nonlinearities, but quantum effects under control.
- So can study non-linear classical solutions.
Galileons

Can consider this symmetry as interesting in its own right

- Yields a novel and fascinating 4d effective field theory
- Relevant field referred to as the Galileon

\[\mathcal{L}_1 = \pi \quad \mathcal{L}_2 = (\partial \pi)^2 \quad \mathcal{L}_3 = (\partial \pi)^2 \Box \pi \]

\[\mathcal{L}_{n+1} = n \eta_{\mu_1 \nu_1 \mu_2 \nu_2 \cdots \mu_n \nu_n} (\partial_{\mu_1} \pi \partial_{\nu_1} \pi \partial_{\mu_2} \partial_{\nu_2} \pi \cdots \partial_{\mu_n} \partial_{\nu_n} \pi) \]

There is a separation of scales

- Allows for classical field configurations with order one nonlinearities, but quantum effects under control.
- So can study non-linear classical solutions.
- Some of these are very important (Vainshtein effect)
Can consider this symmetry as interesting in its own right

• Yields a novel and fascinating 4d effective field theory
• Relevant field referred to as the *Galileon*

(Nicolis, Rattazzi, & Trincherini 2009)

\[
\begin{align*}
\mathcal{L}_1 &= \pi \\
\mathcal{L}_2 &= (\partial \pi)^2 \\
\mathcal{L}_3 &= (\partial \pi)^2 \Box \pi \\
\mathcal{L}_{n+1} &= n \eta^\mu_1 \nu_1 \mu_2 \nu_2 \cdots \mu_n \nu_n \left(\partial_{\mu_1} \pi \partial_{\nu_1} \pi \partial_{\mu_2} \partial_{\nu_2} \pi \cdots \partial_{\mu_n} \partial_{\nu_n} \pi \right)
\end{align*}
\]

There is a separation of scales

• Allows for classical field configurations with order one nonlinearities, but quantum effects under control.
• So can study non-linear classical solutions.
• Some of these are very important (Vainshtein effect)

Luty, Porrati, Rattazzi (2003); Nicolis, Rattazzi (2004)
The Vainshtein Effect
The Vainshtein Effect

Consider, for example, the DGP cubic term, coupled to matter
The Vainshtein Effect

Consider, for example, the DGP cubic term, coupled to matter

\[\mathcal{L} = -3(\partial \pi)^2 - \frac{1}{\Lambda^3} (\partial \pi)^2 \Box \pi + \frac{1}{M_{Pl}} \pi T \]
The Vainshtein Effect

Consider, for example, the DGP cubic term, coupled to matter

$$\mathcal{L} = -3(\partial \pi)^2 - \frac{1}{\Lambda^3} (\partial \pi)^2 \Box \pi + \frac{1}{M_{Pl}} \pi T$$

Now look at spherical solutions around a point mass
The Vainshtein Effect

Consider, for example, the DGP cubic term, coupled to matter

$$\mathcal{L} = -3(\partial \pi)^2 - \frac{1}{\Lambda^3} (\partial \pi)^2 \Box \pi + \frac{1}{M_{Pl}} \pi T$$

Now look at spherical solutions around a point mass

$$\pi(r) = \begin{cases}
\sim \Lambda^3 R_V^{3/2} \sqrt{r} + \text{const.} & r \ll R_V \\
\sim \Lambda^3 R_V^3 \frac{1}{r} & r \gg R_V
\end{cases}$$
The Vainshtein Effect

Consider, for example, the DGP cubic term, coupled to matter

\[\mathcal{L} = -3(\partial \pi)^2 - \frac{1}{\Lambda^3} (\partial \pi)^2 \Box \pi + \frac{1}{M_{Pl}} \pi T \]

Now look at spherical solutions around a point mass

\[\pi(r) = \begin{cases} \sim \Lambda^3 R_V^{3/2} \sqrt{r} + \text{const.} & r \ll R_V \\ \sim \Lambda^3 R_V^3 \frac{1}{r} & r \gg R_V \end{cases} \]

\[R_V \equiv \frac{1}{\Lambda} \left(\frac{M}{M_{Pl}} \right)^{1/3} \]
The Vainshtein Effect

Consider, for example, the DGP cubic term, coupled to matter

\[\mathcal{L} = -3(\partial \pi)^2 - \frac{1}{\Lambda^3} (\partial \pi)^2 \Box \pi + \frac{1}{M_{Pl}} \pi T \]

Now look at spherical solutions around a point mass

\[\pi(r) = \begin{cases}
\sim \Lambda^3 R_V^{3/2} \sqrt{r} + \text{const.} & r \ll R_V \\
\sim \Lambda^3 R_V^3 \frac{1}{r} & r \gg R_V
\end{cases} \]

Looking at a test particle, strength of this force, compared to gravity, is then
The Vainshtein Effect

Consider, for example, the DGP cubic term, coupled to matter

\[\mathcal{L} = -3(\partial \pi)^2 - \frac{1}{\Lambda^3} (\partial \pi)^2 \Box \pi + \frac{1}{M_{Pl}} \pi T \]

Now look at spherical solutions around a point mass

\[\pi(r) = \begin{cases} \sim \Lambda^3 R_V^{3/2} \sqrt{r} + \text{const.} & r \ll R_V \\ \sim \Lambda^3 R_V^3 \frac{1}{r} & r \gg R_V \end{cases} \]

Looking at a test particle, strength of this force, compared to gravity, is then

\[\frac{F_\pi}{F_{\text{Newton}}} = \frac{\pi'(r) / M_{Pl}}{M / (M_{Pl}^2 r^2)} = \begin{cases} \sim \left(\frac{r}{R_V} \right)^{3/2} & R \ll R_V \\ \sim 1 & R \gg R_V \end{cases} \]
The Vainshtein Effect

Consider, for example, the DGP cubic term, coupled to matter

\(\mathcal{L} = -3(\partial \pi)^2 - \frac{1}{\Lambda^3} (\partial \pi)^2 \Box \pi + \frac{1}{M_{Pl}} \pi T \)

Now look at spherical solutions around a point mass

\[\pi(r) = \begin{cases}
\sim \Lambda^3 R_V^{3/2} \sqrt{r} + \text{const.} & r \ll R_V \\
\sim \Lambda^3 R_V^3 \frac{1}{r} & r \gg R_V
\end{cases} \]

Looking at a test particle, strength of this force, compared to gravity, is then

\[\frac{F_{\pi}}{F_{\text{Newton}}} = \frac{\pi'(r)/M_{Pl}}{M/(M_{Pl}^2 r^2)} = \begin{cases}
\sim \left(\frac{r}{R_V} \right)^{3/2} & R \ll R_V \\
\sim 1 & R \gg R_V
\end{cases} \]

So forces much smaller than gravitational strength within the Vainshtein radius - hence safe from 5th force tests.
The Vainshtein Effect
The Vainshtein Effect

Suppose we want to know the field that a source generates within the Vainshtein radius of some large body (like the sun, or earth)

Perturbing the field and the source

yields
The Vainshtein Effect

Suppose we want to know the field that a source generates within the Vainshtein radius of some large body (like the sun, or earth).

Perturbing the field and the source

\[\pi = \pi_0 + \varphi, \quad T = T_0 + \delta T, \]

yields
The Vainshtein Effect

Suppose we want to know the field that a source generates within the Vainshtein radius of some large body (like the sun, or earth).

Perturbing the field and the source

\[\pi = \pi_0 + \varphi, \quad T = T_0 + \delta T, \]

yields

\[\mathcal{L} = -3(\partial \varphi)^2 + \frac{2}{\Lambda^3} (\partial_\mu \partial_\nu \pi_0 - \eta_{\mu\nu} \Box \pi_0) \partial^\mu \varphi \partial^\nu \varphi - \frac{1}{\Lambda^3} (\partial \varphi)^2 \Box \varphi + \frac{1}{M_4} \varphi \delta T \]
The Vainshtein Effect

Suppose we want to know the field that a source generates within the Vainshtein radius of some large body (like the sun, or earth).

Perturbing the field and the source

\[\pi = \pi_0 + \varphi, \quad T = T_0 + \delta T, \]

yields

\[\mathcal{L} = -3(\partial \varphi)^2 + \frac{2}{\Lambda^3} (\partial_\mu \partial_\nu \pi_0 - \eta_{\mu\nu} \Box \pi_0) \partial^{\mu} \varphi \partial^{\nu} \varphi - \frac{1}{\Lambda^3} (\partial \varphi)^2 \Box \varphi + \frac{1}{M_4} \varphi \delta T \]
The Vainshtein Effect

Suppose we want to know the field that a source generates within the Vainshtein radius of some large body (like the sun, or earth)

Perturbing the field and the source

\[\pi = \pi_0 + \varphi, \quad T = T_0 + \delta T, \]

yields

\[\mathcal{L} = -3(\partial \varphi)^2 + \frac{2}{\Lambda^3} (\partial_\mu \partial_\nu \pi_0 - \eta_{\mu\nu} \Box \pi_0) \partial^\mu \varphi \partial^\nu \varphi - \frac{1}{\Lambda^3} (\partial \varphi)^2 \Box \varphi + \frac{1}{M_4} \varphi \delta T \]

\[\sim \left(\frac{R_v}{r} \right)^{3/2} \]
The Vainshtein Effect

Suppose we want to know the field that a source generates within the Vainshtein radius of some large body (like the sun, or earth)

Perturbing the field and the source

$$\pi = \pi_0 + \varphi, \quad T = T_0 + \delta T,$$

yields

$$\mathcal{L} = -3(\partial \varphi)^2 + \frac{2}{\Lambda^3} (\partial_\mu \partial_\nu \pi_0 - \eta_{\mu\nu} \Box \pi_0) \partial^\mu \varphi \partial^\nu \varphi - \frac{1}{\Lambda^3} (\partial \varphi)^2 \Box \varphi + \frac{1}{M_4} \varphi \delta T$$

$$\sim \left(\frac{R_v}{r} \right)^{3/2}$$

Thus, if we canonically normalize the kinetic term of the perturbations, we raise the effective strong coupling scale, and, more importantly, heavily suppress the coupling to matter!
Regimes of Validity

\[r \approx \frac{1}{\Lambda} \quad \text{and} \quad r \approx R_V \]
Regimes of Validity

\[r \ll \frac{1}{\Lambda} \]
\[\alpha_{cl} \sim \left(\frac{R_V}{r} \right)^{3/2} \gg 1 \]
\[\alpha_q \sim \frac{1}{(r \Lambda)^2} \gg 1 \]
Regimes of Validity

The usual quantum regime of a theory

\[r \ll \frac{1}{\Lambda} \]

\[\alpha_{cl} \sim \left(\frac{R_V}{r}\right)^{3/2} \gg 1 \]

\[\alpha_q \sim \frac{1}{(r\Lambda)^2} \gg 1 \]

\[r \sim \frac{1}{\Lambda} \]

\[r \sim R_V \]
The usual quantum regime of a theory

\[r \ll \frac{1}{\Lambda} \]
\[\alpha_{cl} \sim \left(\frac{R_V}{r} \right)^{3/2} \gg 1 \]
\[\alpha_q \sim \frac{1}{(r\Lambda)^2} \gg 1 \]

\[r \sim \frac{1}{\Lambda} \]

\[r \gg R_V \]
\[\alpha_{cl} \sim \left(\frac{R_V}{r} \right)^{3} \ll 1 \]
\[\alpha_q \sim \frac{1}{(r\Lambda)^2} \ll 1 \]

\[r \sim R_V \]
Regimes of Validity

The usual quantum regime of a theory

\[r \ll \frac{1}{\Lambda} \]
\[\alpha_{cl} \sim \left(\frac{R_V}{r}\right)^{3/2} \gg 1 \]
\[\alpha_q \sim \frac{1}{(r\Lambda)^2} \gg 1 \]

The usual linear, classical regime of a theory

\[r \gg R_V \]
\[\alpha_{cl} \sim \left(\frac{R_V}{r}\right)^3 \ll 1 \]
\[\alpha_q \sim \frac{1}{(r\Lambda)^2} \ll 1 \]

\[r \sim \frac{1}{\Lambda} \]
\[r \sim R_V \]
The usual quantum regime of a theory

\[r \ll \frac{1}{\Lambda} \]
\[\alpha_{cl} \sim \left(\frac{R_V}{r} \right)^{3/2} \gg 1 \]
\[\alpha_q \sim \frac{1}{(r\Lambda)^2} \gg 1 \]

The usual linear, classical regime of a theory

\[\frac{1}{\Lambda} \ll r \ll R_V \]
\[\alpha_{cl} \sim \left(\frac{R_V}{r} \right)^{3/2} \gg 1 \]
\[\alpha_q \sim \frac{1}{(r\Lambda)^2} \ll 1 \]

\[r \gg R_V \]
\[\alpha_{cl} \sim \left(\frac{R_V}{r} \right)^3 \ll 1 \]
\[\alpha_q \sim \frac{1}{(r\Lambda)^2} \ll 1 \]
Regimes of Validity

The usual quantum regime of a theory

\[r \ll \frac{1}{\Lambda} \]
\[\alpha_{cl} \sim \left(\frac{R_V}{r}\right)^{3/2} \gg 1 \]
\[\alpha_q \sim \frac{1}{(r\Lambda)^2} \gg 1 \]

The usual linear, classical regime of a theory

\[\frac{1}{\Lambda} \ll r \ll R_V \]
\[\alpha_{cl} \sim \left(\frac{R_V}{r}\right)^{3/2} \gg 1 \]
\[\alpha_q \sim \frac{1}{(r\Lambda)^2} \ll 1 \]

A new classical regime, with order one nonlinearities

\[r \sim \frac{1}{\Lambda} \]
\[r \sim R_V \]
\[\frac{1}{\Lambda} \ll r \ll R_V \]
\[\alpha_{cl} \sim \left(\frac{R_V}{r}\right)^{3} \ll 1 \]
\[\alpha_q \sim \frac{1}{(r\Lambda)^2} \ll 1 \]
Multi-field Galileons and Higher co-Dimension Branes
Higher co-Dimension Probe Branes

Higher co-Dimension Probe Branes

With some work, can extend probe brane construction to multiple co-dimensions
Higher co-Dimension Probe Branes

With some work, can extend probe brane construction to multiple co-dimensions

\[X^\mu(x) = x^\mu, \quad X^I(x) \equiv \pi^I(x) \]
Higher co-Dimension Probe Branes

With some work, can extend probe brane construction to multiple co-dimensions

\[X^\mu (x) = x^\mu, \quad X^I (x) \equiv \pi^I (x) \]
Higher co-Dimension Probe Branes

With some work, can extend probe brane construction to multiple co-dimensions

\[X^\mu(x) = x^\mu, \quad X^I(x) \equiv \pi^I(x) \]

Induced Metric on Brane

\[g_{\mu\nu} = \eta_{\mu\nu} + \partial_\mu \pi^I \partial_\nu \pi_I \]
Higher co-Dimension Probe Branes

With some work, can extend probe brane construction to multiple co-dimensions

\[X^\mu(x) = x^\mu, \quad X^I(x) \equiv \pi^I(x) \]

Induced Metric on Brane

\[g_{\mu\nu} = \eta_{\mu\nu} + \partial_\mu \pi^I \partial_\nu \pi_I \]

More general version of action de Rham & Tolley wrote
Higher co-Dimension Probe Branes

With some work, can extend probe brane construction to multiple co-dimensions

\[X^\mu(x) = x^\mu, \quad X^I(x) \equiv \pi^I(x) \]

Induced Metric on Brane

\[g_{\mu\nu} = \eta_{\mu\nu} + \partial_\mu \pi^I \partial_\nu \pi_I \]

More general version of action de Rham & Tolley wrote

\[S = \int d^4 x \, \sqrt{-g} F \left(g_{\mu\nu}, \nabla_\mu, R^i_{\ j\mu\nu}, R^\rho_{\sigma\mu\nu}, K^i_{\mu\nu} \right) \bigg|_{g_{\mu\nu} = \eta_{\mu\nu} + \partial_\mu \pi^I \partial_\nu \pi_I} \]
Higher co-Dimension Probe Branes

With some work, can extend probe brane construction to multiple co-dimensions

\[X^\mu(x) = x^\mu, \quad X^I(x) \equiv \pi^I(x) \]

Induced Metric on Brane

\[g_{\mu\nu} = \eta_{\mu\nu} + \partial_\mu \pi^I \partial_\nu \pi_I \]

More general version of action de Rham & Tolley wrote

\[
S = \int d^4 x \ \sqrt{-g} F \left(g_{\mu\nu}, \nabla_\mu, R^i_{\ j\mu\nu}, R^\rho_{\ \sigma\mu\nu}, K^i_{\ \mu\nu} \right) \text{ with } g_{\mu\nu} = \eta_{\mu\nu} + \partial_\mu \pi^I \partial_\nu \pi_I
\]
Higher co-Dimension Probe Branes

With some work, can extend probe brane construction to multiple co-dimensions

\[X^\mu(x) = x^\mu, \quad X^I(x) \equiv \pi^I(x) \]

Induced Metric on Brane

\[g_{\mu \nu} = \eta_{\mu \nu} + \partial_\mu \pi^I \partial_\nu \pi_I \]

More general version of action de Rham & Tolley wrote

\[S = \int d^4x \sqrt{-g} F \left(g_{\mu \nu}, \nabla_\mu, R^i_{\ j \mu \nu}, R^\rho_{\ \sigma \mu \nu}, K^i_{\ \mu \nu} \right) \bigg|_{g_{\mu \nu} = \eta_{\mu \nu} + \partial_\mu \pi^I \partial_\nu \pi_I} \]

Covariant Derivative

Normal Bundle Curvature
Higher co-Dimension Probe Branes

With some work, can extend probe brane construction to multiple co-dimensions

\[X^\mu(x) = x^\mu, \quad X^I(x) \equiv \pi^I(x) \]

Induced Metric on Brane

\[g_{\mu\nu} = \eta_{\mu\nu} + \partial_\mu \pi^I \partial_\nu \pi_I \]

More general version of action de Rham & Tolley wrote

\[S = \int d^4x \sqrt{-g} F \left(g_{\mu\nu}, \nabla_\mu, R^i{}_{j\mu\nu}, R^\rho{}_{\sigma\mu\nu}, K^i{}_{\mu\nu} \right) \]

Covariant Derivative \quad Intrinsic Curvature

Normal Bundle Curvature
Higher co-Dimension Probe Branes

With some work, can extend probe brane construction to multiple co-dimensions

\[X^\mu(x) = x^\mu, \quad X^I(x) \equiv \pi^I(x) \]

Induced Metric on Brane

\[g_{\mu\nu} = \eta_{\mu\nu} + \partial_\mu \pi^I \partial_\nu \pi_I \]

More general version of action de Rham & Tolley wrote

\[
S = \int d^4 x \sqrt{-g} F \left(g_{\mu\nu}, \nabla_\mu, R^i_{\quad j\mu\nu}, R^\rho_{\quad \sigma\mu\nu}, K^i_{\mu\nu} \right) \mid \begin{array}{c}
\text{Covariant Derivative} \\
\text{Intrinsic Curvature} \\
\text{Normal Bundle Curvature} \\
\text{Extrinsic curvature}
\end{array}
\]

\[g_{\mu\nu} = \eta_{\mu\nu} + \partial_\mu \pi^I \partial_\nu \pi_I \]
Higher co-Dimension Probe Branes

With some work, can extend probe brane construction to multiple co-dimensions

$$X^\mu(x) = x^\mu, \quad X^I(x) \equiv \pi^I(x)$$

Induced Metric on Brane

$$g_{\mu\nu} = \eta_{\mu\nu} + \partial_\mu \pi^I \partial_\nu \pi_I$$

More general version of action de Rham & Tolley wrote

$$S = \int d^4x \sqrt{-g} F \left(g_{\mu\nu}, \nabla_\mu, R^i_{j\mu\nu}, R^\rho_\sigma{}^{\mu\nu}, K^i_\mu \nu \right)$$

In co-dimension 1, for 2nd order equations, use Lovelock terms and associated boundary terms. Here, for 4d brane, prescription depends on co-dimension

If N = 2, boundary terms include only brane cosmological constant, and

$$\mathcal{L}_{N=2} = \sqrt{-g} \left(R[g] - (K^i)^2 + K^i_{\mu\nu} K_i^{\mu\nu} \right)$$
The Multi-Galileon Limit

The Multi-Galileon Limit

In decoupling limit get a unique multi-Galileon theory, with single coupling, from the brane Einstein-Hilbert action plus a brane cosmological constant:

The Multi-Galileon Limit

In decoupling limit get a unique multi-Galileon theory, with single coupling, from the brane Einstein-Hilbert action plus a brane cosmological constant:

\[
\int d^4x \sqrt{-g} \left(-a_2 + a_4 R \right) \rightarrow \int d^4x \left[-a_2 \frac{1}{2} \partial_\mu \pi^I \partial_\mu \pi_I + a_4 \partial_\mu \pi^I \partial_\nu \pi^J \left(\partial_\lambda \partial_\mu \pi_J \partial_\lambda \partial_\nu \pi_I - \partial_\mu \partial_\nu \pi_I \Box \pi_J \right) \right]
\]
In decoupling limit get a unique multi-Galileon theory, with single coupling, from the brane Einstein-Hilbert action plus a brane cosmological constant:

\[
\int d^4x \sqrt{-g} \left(-a_2 + a_4 R \right) \rightarrow \int d^4x \left[-a_2 \frac{1}{2} \partial_\mu \pi^I \partial^\mu \pi_I + a_4 \partial_\mu \pi^I \partial_\nu \pi^J \left(\partial_\lambda \partial^\mu \pi_J \partial^\nu \pi_I - \partial^\mu \partial^\nu \pi_I \Box \pi_J \right) \right]
\]

(In higher dimensions, more terms are possible)
As before, find combined symmetry in small-field limit under which Π invariant:

$$
\int d^4x \sqrt{-g} \left(-a_2 + a_4 R \right) \rightarrow \int d^4x \left[-a_2 \frac{1}{2} \partial_\mu \pi^I \partial^\mu \pi_I + a_4 \partial_\mu \pi^I \partial_\nu \pi^J \left(\partial_\lambda \partial^\mu \pi_J \partial^\nu \pi_I - \partial^\mu \partial^\nu \pi_I \Box \pi_J \right) \right]
$$

(In higher dimensions, more terms are possible)

In decoupling limit get a unique multi-Galileon theory, with single coupling, from the brane Einstein-Hilbert action plus a brane cosmological constant:

$$
\left(\text{In higher dimensions, more terms are possible} \right)
$$
In decoupling limit get a unique multi-Galileon theory, with single coupling, from the brane Einstein-Hilbert action plus a brane cosmological constant:

\[\int d^4x \sqrt{-g} (-a_2 + a_4 R) \rightarrow \int d^4x \left[-a_2 \frac{1}{2} \partial_\mu \pi^I \partial^\mu \pi_I + a_4 \partial_\mu \pi^I \partial_\nu \pi^J (\partial_\lambda \partial^\mu \pi_J \partial^\nu \pi_I - \partial^\mu \partial^\nu \pi_I \Box \pi_J) \right] \]

(In higher dimensions, more terms are possible)

As before, find combined symmetry in small-field limit under which \(\Pi \) invariant:

\[\delta \pi^I = \omega^I_{\mu} x^\mu + \epsilon^I + \omega^I_{IJ} \pi^J \]
The Multi-Galileon Limit

In decoupling limit get a unique multi-Galileon theory, with single coupling, from the brane Einstein-Hilbert action plus a brane cosmological constant:

\[
\int d^4x \sqrt{-g} \left(-a_2 + a_4 R \right) \rightarrow \int d^4x \left[-a_2 \frac{1}{2} \partial_\mu \pi^I \partial^\mu \pi_I + a_4 \partial_\mu \pi^I \partial_\nu \pi^J \left(\partial_\lambda \partial^\mu \pi_J \partial^\nu \pi_I - \partial^\mu \partial^\nu \pi_I \Box \pi_J \right) \right]
\]

(In higher dimensions, more terms are possible)

As before, find combined symmetry in small-field limit under which \(\Pi \) invariant:

\[
\delta \pi^I = \omega^I_{\mu} x^\mu + \epsilon^I + \omega^I_J \pi^J
\]
The Multi-Galileon Limit

In decoupling limit get a unique multi-Galileon theory, with single coupling, from the brane Einstein-Hilbert action plus a brane cosmological constant:

$$\int d^4x \sqrt{-g} (-a_2 + a_4 R) \rightarrow \int d^4x \left[-a_2 \frac{1}{2} \partial_\mu \pi^I \partial^\mu \pi_I + a_4 \partial_\mu \pi^I \partial_\nu \pi^J \left(\partial_\lambda \partial^\mu \pi_J \partial^\nu \pi_I - \partial_\mu \partial^\nu \pi_I \Box \pi_J \right) \right]$$

(In higher dimensions, more terms are possible)

As before, find combined symmetry in small-field limit under which Π invariant:

$$\delta \pi^I = \omega^I_{\mu} x^\mu + \epsilon^I + \omega^I_J \pi^J$$

Multiple Galileons
The Multi-Galileon Limit

In decoupling limit get a unique multi-Galileon theory, with single coupling, from the brane Einstein-Hilbert action plus a brane cosmological constant:

\[\int d^4x \sqrt{-g} (-a_2 + a_4 R) \rightarrow \int d^4x \left[-a_2 \frac{1}{2} \partial_\mu \pi^I \partial^\mu \pi_I + a_4 \partial_\mu \pi^I \partial_\nu \pi^J (\partial_\lambda \partial^\nu \pi_J \partial^\mu \pi_I - \partial^\mu \partial^\nu \pi_I \Box \pi_J) \right] \]

(In higher dimensions, more terms are possible)

As before, find combined symmetry in small-field limit under which \(\Pi \) invariant:

\[\delta \pi^I = \omega^I_\mu x^\mu + \epsilon^I + \omega^I_J \pi^J \]

Multiple Galileons
The Multi-Galileon Limit

In decoupling limit get a unique multi-Galileon theory, with single coupling, from the brane Einstein-Hilbert action plus a brane cosmological constant:

$$\int d^4 x \sqrt{-g} (-a_2 + a_4 R) \to \int d^4 x \left[-a_2 \frac{1}{2} \partial_\mu \pi^I \partial^\mu \pi_I + a_4 \partial_\mu \pi^I \partial_\nu \pi^J \left(\partial_\lambda \partial^\mu \pi_J \partial^\nu \pi_I - \partial^\mu \partial^\nu \pi_I \Box \pi_J \right) \right]$$

(In higher dimensions, more terms are possible)

As before, find combined symmetry in small-field limit under which Π invariant:

$$\delta \pi^I = \omega^I_{\mu} x^\mu + \epsilon^I + \omega^I_J \pi^J$$

Multiple Galileons New SO(N) symmetry
The Multi-Galileon Limit

In decoupling limit get a unique multi-Galileon theory, with single coupling, from the brane Einstein-Hilbert action plus a brane cosmological constant:

\[
\int d^4x \sqrt{-g} (-a_2 + a_4 R) \rightarrow \int d^4x \left[-a_2 \frac{1}{2} \partial_\mu \pi^I \partial^\mu \pi_I + a_4 \partial_\mu \pi^I \partial_\nu \pi^J \left(\partial_\lambda \partial^\mu \pi_I \partial^\nu \pi_I - \partial^\mu \partial^\nu \pi_I \Box \pi_J \right) \right]
\]

(In higher dimensions, more terms are possible)

As before, find combined symmetry in small-field limit under which \(\Pi \) invariant:

\[
\delta \pi^I = \omega^I_{\mu} \partial^\mu x^I + \epsilon^I + \omega^I_{J} \pi^J
\]

Breaking the SO(N) get a description more appropriate to, for example, cascading gravity.
The Multi-Galileon Limit

In decoupling limit get a unique multi-Galileon theory, with single coupling, from the brane Einstein-Hilbert action plus a brane cosmological constant:

$$\int d^4 x \sqrt{-g} (-a_2 + a_4 R) \to \int d^4 x \left[-a_2 \frac{1}{2} \partial_\mu \pi^I \partial^\mu \pi_I + a_4 \partial_\mu \pi^I \partial_\nu \pi^J \left(\partial_\lambda \partial^\mu \pi_J \partial^\nu \pi_I - \partial^\mu \partial^\nu \pi_I \Box \pi_J \right) \right]$$

(In higher dimensions, more terms are possible)

As before, find combined symmetry in small-field limit under which Π invariant:

$$\delta \pi^I = \omega^I_\mu x^\mu + \epsilon^I + \omega^I_J \pi^J$$

multiple Galileons \hspace{1cm} \text{New SO(N) symmetry}

Breaking the SO(N) get a description more appropriate to, for example, cascading gravity.
Nonrenormalization!
Nonrenormalization!

Remarkable fact about these theories (c.f SUSY theories)
Nonrenormalization!

Remarkable fact about these theories (c.f SUSY theories)

Expand quantum effective action for the classical field about expectation value
Nonrenormalization!

Remarkable fact about these theories (c.f SUSY theories)

Expand quantum effective action for the classical field about expectation value
Remarkable fact about these theories (c.f SUSY theories)

Expand quantum effective action for the classical field about expectation value

The n-point contribution contains at least $2n$ powers of external momenta: cannot renormalize Galilean term with only $2n-2$ derivatives. With or without the $SO(N)$, can show, just by computing Feynman diagrams, that at all loops in perturbation theory, for any number of fields, terms of the galilean form cannot receive new contributions.

Nonrenormalization!

Remarkable fact about these theories (c.f SUSY theories)

Expand quantum effective action for the classical field about expectation value

The n-point contribution contains at least $2n$ powers of external momenta: cannot renormalize Galilean term with only $2n-2$ derivatives. With or without the SO(N), can show, just by computing Feynman diagrams, that at all loops in perturbation theory, for any number of fields, terms of the galilean form cannot receive new contributions.

Can even add a mass term and remains technically natural
Generalized Galileons on Curved Geometries
Galileons on General Backgrounds

Goon, Hinterbichler, M. T., JCAP 1107, 017 (2011).]
Main point:

- Have emphasized probe brane construction because it can be extended to more general geometries. e.g. other maximally-symmetric examples
Main point:

- Have emphasized probe brane construction because it can be extended to more general geometries, e.g., other maximally-symmetric examples.

\[X^A(x^\mu) \]

Goons, Hinterbichler, M.T., *JCAP* 1107, 017 (2011).]
Main point:

• Have emphasized probe brane construction because it can be extended to more general geometries. e.g. other maximally-symmetric examples

\[
\text{Bulk} \quad ds^2 = d\rho^2 + f(\rho)^2 g_{\mu\nu}(x) dx^\mu dx^\nu
\]
Galileons on General Backgrounds

Main point:
• Have emphasized probe brane construction because it can be extended to more general geometries. e.g. other maximally-symmetric examples

Bulk \[ds^2 = d\rho^2 + f(\rho)^2 g_{\mu\nu}(x)dx^{\mu}dx^{\nu} \]

Induced on Brane \[\bar{g}_{\mu\nu} = f(\pi)^2 g_{\mu\nu} + \nabla_\mu \pi \nabla_\nu \pi \]
Main point:

- Have emphasized probe brane construction because it can be extended to more general geometries. e.g. other maximally-symmetric examples

Bulk: \(ds^2 = d\rho^2 + f(\rho)^2 g_{\mu \nu}(x) dx^\mu dx^\nu \)

Induced on Brane: \(\bar{g}_{\mu \nu} = f(\pi)^2 g_{\mu \nu} + \nabla_\mu \pi \nabla_\nu \pi \)
Main point:

- Have emphasized probe brane construction because it can be extended to more general geometries, e.g., other maximally-symmetric examples

Bulk:

\[ds^2 = d\rho^2 + f(\rho)^2 g_{\mu\nu}(x)dx^\mu dx^\nu \]

Induced on Brane:

\[\bar{g}_{\mu\nu} = f(\pi)^2 g_{\mu\nu} + \nabla_\mu \pi \nabla_\nu \pi \]

Bulk Killing Vectors:

\[\delta_K X^A = \alpha^i K_i^A(X) + \alpha^I K_I^A(X) \]
Galileons on General Backgrounds

Main point:
• Have emphasized probe brane construction because it can be extended to more general geometries. e.g. other maximally-symmetric examples

\[
\begin{align*}
\text{Bulk:} & \quad ds^2 = d\rho^2 + f(\rho)^2 g_{\mu\nu}(x) dx^\mu dx^\nu \\
\text{Induced on Brane:} & \quad \bar{g}_{\mu\nu} = f(\pi)^2 g_{\mu\nu} + \nabla_\mu \pi \nabla_\nu \pi \\
\text{Bulk Killing Vectors:} & \quad \delta_K X^A = a^i K_i^A(X) + a^I K_I^A(X)
\end{align*}
\]

Galileons with symmetry

\[
\begin{align*}
(\delta_K + \delta_{g,\text{comp}}) \pi &= -a^i k^\mu_i(x) \partial_\mu \pi + a^I K^5_I(x, \pi) - a^I K^{\mu}_I(x, \pi) \partial_\mu \pi
\end{align*}
\]
The Maximally-Symmetric Taxonomy
Potentially different Galileons corresponding to different ways to foliate a maximally symmetric 5-space by a maximally symmetric 4-d hypersurface.
The Maximally-Symmetric Taxonomy

Potentially different Galileons corresponding to different ways to foliate a maximally symmetric 5-space by a maximally symmetric 4-d hypersurface

<table>
<thead>
<tr>
<th>Ambient metric</th>
<th>Brane metric</th>
<th>AdS$_4$</th>
<th>M_4</th>
<th>dS$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdS_5</td>
<td>AdS DBI galileons</td>
<td>so(4, 2) \rightarrow so(3, 2)</td>
<td>Conformal DBI galileons</td>
<td>type III dS DBI galileons</td>
</tr>
<tr>
<td></td>
<td>$f(\pi) = R \cosh^2 (\rho/R)$</td>
<td>$f(\pi) = e^{-\pi/R}$</td>
<td>$f(\pi) = R \sinh^2 (\rho/R)$</td>
<td>$f(\pi) = R \sin^2 (\rho/R)$</td>
</tr>
<tr>
<td>M_5</td>
<td>DBI galileons</td>
<td>$p(4, 1) \rightarrow p(3, 1)$</td>
<td>$f(\pi) = 1$</td>
<td>type II dS DBI galileons</td>
</tr>
<tr>
<td></td>
<td>$f(\pi) = 1$</td>
<td></td>
<td></td>
<td>$f(\pi) = \pi$</td>
</tr>
<tr>
<td>dS_5</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$f(\pi) = R \sin^2 (\rho/R)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Small field limit

- AdS galileons
- normal galileons
- dS galileons
Applications

• At this point there are a reasonably large number of fledgling attempts to apply these ideas to cosmology, field theory, and gravity.
Applications

• At this point there are a reasonably large number of fledgling attempts to apply these ideas to cosmology, field theory, and gravity
 - Early cosmology and inflation
Applications

• At this point there are a reasonably large number of fledgling attempts to apply these ideas to cosmology, field theory, and gravity
 - Early cosmology and inflation
 - Galilean genesis (alternative to inflation); and in general as a way to violate the null energy condition.
Applications

• At this point there are a reasonably large number of fledgling attempts to apply these ideas to cosmology, field theory, and gravity
 - Early cosmology and inflation
 - Galilean genesis (alternative to inflation); and in general as a way to violate the null energy condition.
 - A possible well-behaved way to modify gravity, perhaps in the infrared (degravitation?).
Applications

- At this point there are a reasonably large number of fledgling attempts to apply these ideas to cosmology, field theory, and gravity
 - Early cosmology and inflation
 - Galilean genesis (alternative to inflation); and in general as a way to violate the null energy condition.
 - A possible well-behaved way to modify gravity, perhaps in the infrared (degravitation?).
 - Supersymmetrization
Applications

• At this point there are a reasonably large number of fledgling attempts to apply these ideas to cosmology, field theory, and gravity
 - Early cosmology and inflation
 - Galilean genesis (alternative to inflation); and in general as a way to violate the null energy condition.
 - A possible well-behaved way to modify gravity, perhaps in the infrared (degravitation?).
 - Supersymmetrization
 - An appearance in the decoupling limit of some massive gravity theories (I’ll mention a little more in my plenary)
Summary

• Higher dimensional models are teaching us about entirely novel 4d effective field theories that may be relevant to cosmology
Summary

- Higher dimensional models are teaching us about entirely novel 4d effective field theories that may be relevant to cosmology.
- We have shown how to derive the scalar field theories corresponding to Galileons propagating on fixed curved backgrounds (maximally symmetric and FRW examples).
Summary

• Higher dimensional models are teaching us about entirely novel 4d effective field theories that may be relevant to cosmology
• We have shown how to derive the scalar field theories corresponding to Galileons propagating on fixed curved backgrounds (maximally symmetric and FRW examples).
• Have also shown how to extend the probe brane construction to higher co-dimension branes, yielding multi-Galileon theories.
• Higher dimensional models are teaching us about entirely novel 4d effective field theories that may be relevant to cosmology
• We have shown how to derive the scalar field theories corresponding to Galileons propagating on fixed curved backgrounds (maximally symmetric and FRW examples).
• Have also shown how to extend the probe brane construction to higher co-dimension branes, yielding multi-Galileon theories.
• Couplings to matter and stability still need investigating in generality - some simple couplings display instabilities.
Current Work & the Future
Galileons are Wess-Zumino terms! In d dimensions are d-form potentials for $(d+1)$-forms which are non-trivial co-cycles in Lie algebra cohomology of the full symmetry group relative to unbroken one.
Current Work & the Future

• Galileons are Wess-Zumino terms! In d dimensions are d-form potentials for (d+1)-forms which are non-trivial co-cycles in Lie algebra cohomology of the full symmetry group relative to unbroken one.

[Goon, Hinterbichler, Joyce & M.T., arxiv:1203.3191 [hep-th]]
Current Work & the Future

• Galileons are Wess-Zumino terms! In d dimensions are d-form potentials for $(d+1)$-forms which are non-trivial co-cycles in Lie algebra cohomology of the full symmetry group relative to unbroken one.

 [Goon, Hinterbichler, Joyce & M.T., arxiv:1203.3191 [hep-th]]

• What about driving cosmology? Need dynamical gravity for that, and we know how to do this (work in preparation)
Current Work & the Future

• Galileons are Wess-Zumino terms! In d dimensions are d-form potentials for (d+1)-forms which are non-trivial cocycles in Lie algebra cohomology of the full symmetry group relative to unbroken one.

 [Goon, Hinterbichler, Joyce & M.T., arxiv:1203.3191 [hep-th]]

• What about driving cosmology? Need dynamical gravity for that, and we know how to do this (work in preparation)

 [Gabadadze, Hinterbichler, Khoury, Pirtshklava & M.T., arxiv:1207.???? [hep-th]]
Current Work & the Future

• Galileons are Wess-Zumino terms! In d dimensions are d-form potentials for (d+1)-forms which are non-trivial co-cycles in Lie algebra cohomology of the full symmetry group relative to unbroken one.

 [Goon, Hinterbichler, Joyce & M.T., arxiv:1203.3191 [hep-th]]

• What about driving cosmology? Need dynamical gravity for that, and we know how to do this (work in preparation)

 [Gabadadze, Hinterbichler, Khoury, Pirtshklava & M.T., arxiv:1207.???? [hep-th]]

• A true application to cosmology (work in preparation).
Current Work & the Future

• Galileons are Wess-Zumino terms! In d dimensions are d-form potentials for (d+1)-forms which are non-trivial co-cycles in Lie algebra cohomology of the full symmetry group relative to unbroken one.

 [Goon, Hinterbichler, Joyce & M.T., arxiv:1203.3191 [hep-th])

• What about driving cosmology? Need dynamical gravity for that, and we know how to do this (work in preparation)

 [Gabadadze, Hinterbichler, Khoury, Pirtshklava & M.T., arxiv:1207.???? [hep-th])

• A true application to cosmology (work in preparation).

 [Hinterbichler, Stokes & M.T., arxiv:1207.???? [hep-th])
• Galileons are Wess-Zumino terms! In d dimensions are d-form potentials for $(d+1)$-forms which are non-trivial co-cycles in Lie algebra cohomology of the full symmetry group relative to unbroken one.

 [Goon, Hinterbichler, Joyce & M.T., arxiv:1203.3191 [hep-th]]

• What about driving cosmology? Need dynamical gravity for that, and we know how to do this (work in preparation)

 [Gabadadze, Hinterbichler, Khoury, Pirtshklava & M.T., arxiv:1207.???? [hep-th]]

• A true application to cosmology (work in preparation).

 [Hinterbichler, Stokes & M.T., arxiv:1207.???? [hep-th]]

• What lies behind the nonrenormalized Lagrangians?
Current Work & the Future

• Galileons are Wess-Zumino terms! In d dimensions are d-form potentials for (d+1)-forms which are non-trivial co-cycles in Lie algebra cohomology of the full symmetry group relative to unbroken one.

 [Goon, Hinterbichler, Joyce & M.T., arxiv:1203.3191 [hep-th])

• What about driving cosmology? Need dynamical gravity for that, and we know how to do this (work in preparation)

 [Gabadadze, Hinterbichler, Khoury, Pirtshklava & M.T., arxiv:1207.???? [hep-th])

• A true application to cosmology (work in preparation).

 [Hinterbichler, Stokes & M.T., arxiv:1207.???? [hep-th])

• What lies behind the nonrenormalized Lagrangians?

Thank You!
Acknowledgements & References