Searches for very rare decays to purely leptonic final states at LHCb

Mathieu Perrin-Terrin on behalf of the LHCb Collaboration

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.

July 6th, 2012

ICHEP - Melbourne, 2012

1 Introduction

- 2 Search for $B^0_{(s)} \to \mu^+ \mu^-$
- 3 Search for $B^0_{(s)} \to \mu^+ \mu^- \mu^+ \mu^-$
- 4 Search for $\tau^- \to \mu^+ \mu^- \mu^-$

Introduction

Muons at LHCb:

- Trigger on very low transverse momentum muon (0.5 GeV)
- Momentum resolution (0.4% $< \delta p/p < 0.6\%$)
- Muon Identification:

$$\epsilon(\mu) \simeq 97\%$$

 $\epsilon(\pi \to \mu) = 1 \text{ to } 3\%$

Data set for the 3 analyses:

- \sim 1 fb⁻¹ collected in 2011
- Blind signal mass region

Outline

- 1 Introduction
- 2 Search for $B^0_{(s)} \to \mu^+ \mu^-$
- 3 Search for $B^0_{(s)} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
- 4 Search for $\tau^- \to \mu^+ \mu^- \mu^-$

References: LHCb-CONF-2012-017 PRL 108 (2012) 231801, arXiv:1203.4493

Motivation

Very suppressed in SM:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.0 \pm 0.1) \times 10^{-10}$

Buras, JHEP 1010 (2010) 009,arXiv:1005.5310

Could be enhanced in physics beyond SM

modified from arXiv:0907.5568

Event selection

- Loose selection
- Particle identification requirement to reduce peaking background from $B^0_{(s)} \to h^+(\mu^+)h'^-(\mu^-)$

Events classification in a binned 2D plane:

Multivariate (MVA) $\times m_{\mu\mu}$

- MVA: Boosted Decision Tree (BDT)
 Inputs: 9 variables describing the topology of the candidates
- Trained on simulated data

• Calibrated on $B^0_{(s)} \to h^+ h'^-$ for signal and peaking background on $m_{\mu\mu}$ side bands for combinatorial background

- Signal m_{μμ}: Crystal Ball mean and resolution taken from data
- Combinatorial Background: exponential extrapolated from the side bands

- Peaking Background:
 - -misidentification probability obtained on data in bins of p and p_T -applied to the spectra of a simulated $B_{(s)}^0 \to h^+ h'^-$ cocktail

Normalisation and Observed Data

Normalisation of the signal PDF obtained with a channel of known \mathcal{B} :

$$B^0_s o J/\psi \phi \quad B^0 o K^+\pi^- \quad B^+ o J/\psi K^+$$

$$N_{B_{(s)}^{0} o \mu^{+}\mu^{-}} = rac{\epsilon_{sig}}{\epsilon_{norm}} rac{f_{B_{q}}}{f_{norm}} rac{N_{norm}}{\mathcal{B}_{norm}}$$

Efficiencies (ϵ_{sig} , ϵ_{norm}) obtained with a data driven method. f_{s}/f_{d} measured at LHCb. PRD85 (2012) 032008, arXiv:1111.2357

All expectations for signal and background have been derived:

Normalisation and Observed Data

Normalisation of the signal PDF obtained with a channel of known \mathcal{B} :

$${\cal B}_{\rm s}^0
ightarrow {\it J}/\psi \phi \quad {\it B}^0
ightarrow {\it K}^+\pi^- \quad {\it B}^+
ightarrow {\it J}/\psi {\it K}^+$$

$$N_{B_{(s)}^0 o \mu^+ \mu^-} = rac{\epsilon_{sig}}{\epsilon_{norm}} rac{f_{B_q}}{f_{norm}} rac{N_{norm}}{\mathcal{B}_{norm}}$$

Efficiencies (ϵ_{sig} , ϵ_{norm}) obtained with a data driven method. f_s/f_d measured at LHCb. PRD85 (2012) 032008, arXiv:1111.2357

Unblind the data:

Results

Limits are extracted from data and expectations with the CL_{s} method:

$${\cal B}_s^0
ightarrow \mu^+\mu^-$$
 upper limit (95% C.L.) $B^0
ightarrow \mu^+\mu^-$ upper limit (95% C.L.)

Exp. SM+Bkg 7.2×10^{-9} Obs. 4.5×10^{-9}

Expected Bkg+SM (1 of Observed Observed

Exp. Bkg Only 1.1×10^{-9} Obs. 1.0×10^{-9}

Is $B_s^0 \to \mu^+ \mu^-$ compatible with SM ?

• Data compatible with Bkg+SM within 1σ

 $B(B_{a}^{0} \rightarrow \mu^{+} \mu^{-}) [10^{-9}]$

p-value (1-CL_b) = 18%

New: Combination CMS-ATLAS-LHCb

95% C.L. Bounds SM DO PLB 693 (2010) 539, arXiv:1006.3469 CDF 10 fb⁻¹ La Thuile 2012, Miyake **ATLAS** arXiv:1204.0735 **CMS** JHEP 1204 (2012) 033, arXiv:1203.3976. LHCb PRL 108 (2012) 231801, arXiv:1203.4493 $20 \ 30 \ 40 \ 50 \ \mathcal{B}(B_s \to \mu^+ \mu^-) \times 10^{-9}$ 10

New: Combination CMS-ATLAS-LHCb

LHCb-CONF-2012-017

Preliminary upper limits
(95%C.L.):

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 4.2 \times 10^{-9}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 8.1 \times 10^{-10}$

Implication and Prospects

LHCb results put stringent constraints on physics beyond the SM:

Prospect for a 3σ observation at LHCb:

Outline

- 1 Introduction
- 2 Search for $B^0_{(s)} \to \mu^+ \mu^-$
- 3 Search for $B^0_{(s)} \to \mu^+ \mu^- \mu^+ \mu^-$
- 4 Search for $\tau^- \to \mu^+ \mu^- \mu^-$

Reference: LHCb-CONF-2012-010

Search for $\overline{B^0_{(s)}} ightarrow \overline{\mu^+ \mu^- \mu^+ \mu^-}$

Motivations

- Resonant SM mode $B_s^0 \to J/\psi \phi$: $\mathcal{B}(B_s^0 \to J/\psi\phi \to \mu\mu\mu\mu) = (2.3 \pm 0.8) \times 10^{-8}$
- Non-resonant SM mode $\mathcal{B}(\mathcal{B}^0_{(s)} \to \mu\mu\mu\mu) < 10^{-10}$
- Could be enhanced by physics beyond SM. c.f. HyperCP anomaly PRL. 94 (2005) 021801

Strategy: a cut and count analysis

- Selection based on:
 - Quality and displacement of secondary vertex
 - Good particle identification
 - Flag of the resonant candidates $B_s^0 \to J/\psi \phi \to \mu \mu \mu \mu$: used them to optimise the selection
- Normalisation to $B^0 \to J/\psi(\mu^+\mu^-)\bar{K}^{0*}(K^+\pi^-)$

Results

 Event distribution in the non-resonant mass window compatible with background expectation

 Preliminary upper limits (95%C.L.) extracted with the CL_s method:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 1.3 \times 10^{-8}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 5.4 \times 10^{-9}$

First limits on these processes.

- Introduction
- 2 Search for $B^0_{(s)} \to \mu^+ \mu^-$
- 3 Search for $B^0_{(s)} \to \mu^+ \mu^- \mu^+ \mu^-$
- 4 Search for $\tau^- \to \mu^+ \mu^- \mu^-$

Reference: LHCb-CONF-2012-015

Motivation and Strategy

Motivation

- Lepton Flavour Violation
- $\tau^- \to \mu^+ \mu^- \mu^-$ is very suppressed in SM
- Could be enhanced by physics beyond SM

Strategy very similar to $B_s^0 \to \mu^+ \mu^-$

Loose selection

Motivation

- Lepton Flavour Violation
- $\tau^- \to \mu^+ \mu^- \mu^-$ is very suppressed in SM
- Could be enhanced by physics beyond SM

Strategy very similar to
$$B_s^0 o \mu^+\mu^-$$

- Loose selection
- Event classification in a 3D space:
 - Invariant mass m_{μμμ}

Motivation and Strategy

Motivation

- Lepton Flavour Violation
- $\tau^- \to \mu^+ \mu^- \mu^-$ is very suppressed in SM
- Could be enhanced by physics beyond SM

Strategy very similar to $B_s^0 \to \mu^+ \mu^-$

- Loose selection
- Event classification in a **3D space**:
 - Invariant mass m_{μμμ}
 - Topological MVA

Motivation and Strategy

Motivation

- Lepton Flavour Violation
- $\tau^- \to \mu^+ \mu^- \mu^-$ is very suppressed in SM
- Could be enhanced by physics beyond SM

Strategy very similar to $B_s^0 \to \mu^+ \mu^-$

- Loose selection
- Event classification in a **3D space**:
 - Invariant mass m_{μμμ}
 - Topological MVA
 - Particle identification MVA

Motivation

- Lepton Flavour Violation
- $\tau^- \to \mu^+ \mu^- \mu^-$ is very suppressed in SM
- Could be enhanced by physics beyond SM

Strategy very similar to $B_s^0 \rightarrow \mu^+\mu^-$

- Event classification in a 3D space:
 - Invariant mass m_{μμμ}
 - Topological MVA
 - Particle identification MVA
- Normalisation to $D_s^- o \phi(\mu^+\mu^-)\pi^-$

Motivation

- Lepton Flavour Violation
- $\tau^- \to \mu^+ \mu^- \mu^-$ is very suppressed in SM
- Could be enhanced by physics beyond SM

Strategy very similar to $B_s^0 \to \mu^+ \mu^-$

- Loose selection
- Event classification in a **3D space**:
 - Invariant mass m_{μμμ}
 - Topological MVA
 - Particle identification MVA
- Normalisation to $D_s^- \to \phi(\mu^+\mu^-)\pi^-$
- Limits extracted with the CL_s method

Results

 Preliminary upper limits 95 (90)% C.L. extracted using the CL_s method

$$\mathcal{B}(\tau^- \to \mu^+ \mu^- \mu^-) < 7.8 (6.3) \times 10^{-8}$$

• Results comparable with Belle PLB 687 (2010) 139, arXiv:1001.3221 $\mathcal{B}(\tau^- \to \mu^+\mu^-\mu^-) < 2.1 \times 10^{-8}$ at 90% C.L.

Summary

• LHC (LHCb) searches for $B^0_{(s)} \to \mu^+ \mu^-$:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 4.2 \text{ (4.5)} \times 10^{-9}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 8.1 \text{ (10)} \times 10^{-10}$

• Very first limits (preliminary) on the ${\cal B}^0_{(s)} o \mu^+\mu^-\mu^+\mu^-$ processes:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 1.3 \times 10^{-8}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 5.4 \times 10^{-9}$

• First limits at hadron collider (preliminary) on $\tau^- \to \mu^+ \mu^- \mu^-$:

$$\mathcal{B}(\tau^- \to \mu^+ \mu^- \mu^-) < 7.8 \times 10^{-8}$$

All analyses performed with 1 fb⁻¹, outlook for 2012; another 1.5 fb⁻¹! , another 1.5 fb⁻¹!