# Quarkonia at LHCb



#### Valerie Gibson on behalf of the LHC6 Collaboration University of Cambridge









Quarkonia production provides a powerful test of perturbative and nonperturbative QCD models.

NRQCD

V.Gibson

$$\sigma(pp \to Q + X) = \sum_{n} \sigma(pp \to q\overline{q}[n]) \bullet \langle \mathcal{O}^{\mathcal{P}}[n] \rangle$$

Perturbative

Short distance, partonic + pdf

Non-perturbative Long distance matrix elements

A combination of colour octet and colour singlet contributions describe all cross-section and  $p_{\tau}$  spectra well.

Polarisation predictions fall well short of data, even including contributions from feed-down.

Gong, Wan, Wang & Zhang, arXiv:1205.6682 -0.4

#### -1More input from the LHC on 10 5 quarkonia production & polarisation is needed



Butenschoen & Kniehl, arXiv:1201.3862





## The LHCb Experiment



LHCb is particularly suited to the study of onia.

Large production cross-sections  $\sigma(c\bar{c}) = 1742 \pm 267 \,\mu b$  7 TeV  $\sigma(b\bar{b}) = 75.3 \pm 5.4 \pm 13 \,\mu b$  in acceptance LHCb-CONF-2010-013, LHCb: PLB 694 (2010) 209

Analysis rapidity range : 2 < y < 4.5

Precision tracking and muon system, ECAL and RICH PID

Low  $p_T$  trigger (typical thresholds):

1μ : p<sub>T</sub> > 1.8 GeV/c 2μ: p<sub>T</sub> > 0.56 GeV/c > 0.48 GeV/c



| Year | √s (TeV) | Int. Lumi.                                            |
|------|----------|-------------------------------------------------------|
| 2010 | 7        | 36 pb <sup>-1</sup>                                   |
| 2011 | 2.76     | 71 nb <sup>-1</sup>                                   |
| 2011 | 7        | 1 fb <sup>-1</sup>                                    |
| 2012 | 8        | 0.6 fb <sup>-1</sup><br>(exp. ~1.5 fb <sup>-1</sup> ) |





LHCb has published measurements of prompt quarkonia (J/ $\psi$ ,  $\psi$ (2S) and  $\Upsilon$ ) production at 7 TeV.

All consistent with NRQCD predictions







Non-prompt (from b-hadrons) J/ $\psi$  and  $\psi$ (2S) measurements are also

consistent with FONLL predictions

M.Cacciari et al; JHEP 05 (1998) 007 M.Cacciari et al; CERN-PH-TH/2011-227.







#### Quarkonia at 8 TeV



Fraction of  $J/\psi$  from b extracted from fit to mass and pseudo proper time



Expect more results at 8 (and 2.76) TeV very soon !



## Multiple Quarkonia



Production of multiple heavy flavour states tests

– gluo – Doul

gg fusion

- gluon fusion
- Double Parton Scattering (DPS)
- Intrinsic charm content of the proton



LHCb published first observation of double J/ $\psi$  production at hadron colliders LHCb : PLB 707 (2012) 52

 $J/\psi$  + open charm (D<sup>0</sup>, D<sup>+</sup>, D<sub>s</sub><sup>+</sup>,  $\Lambda_c^+$ ) and double open charm production



## Multiple Quarkonia



9

#### LHCb : arXiv:1205.0975 Measured cross-sections suggest DPS needed gg fusion 🔜 $J/\psi D^0$ $J/\psi D^0$ **DPS predictions** $J/\psi D^+$ $J/\psi D^+$ using cross-section $J/\psi D_s^+$ $J/\psi D_s^+$ by CDF for multi-jets. $J/\psi \Lambda_c^+$ $J/\psi \Lambda_c^+$ $10^{3}$ $10^{4}$ 10-1 $10^{2}$ $10^{2}$ 10 10 Berezhnoy et al; PRD 57 (1998) 4385 $\sigma_{C_1}\sigma_{C_2}/\sigma_{C_1C_2}$ [mb] $\sigma$ [nb]

Baranov, PRD 73 (2006) 074021 Lansberg, EPJC 61 (2009) 693

#### Kinematic distributions suggest sizeable gluon-splitting contributions





#### Heavy Onia



Measurements of heavy quarkonia provide important tests of the colour singlet and colour octet production mechanisms

- Feed-down fractions ( $\chi_c \rightarrow J/\psi; \chi_b \rightarrow \Upsilon$ )
- Ratios of  $\chi_{c,bJ}$  (J=0,1,2) spin states

and are crucial for the measurement of polarization.

Studies of heavy bottomonia states are relatively new.

LHCb measurements in unique region 2 < y < 4.5;  $p_T (J/\psi) > 2 \text{ GeV/c}$  $p_T (\Upsilon) > 6 \text{ GeV/c}$ 







LHCb reconstructs  $\chi_c$  via the radiative decay

 $\chi_{cJ}(nP) \rightarrow J/\psi \gamma$ 

LHCb : arXiv:1202.1080 LHCb : arXiv:1204.1462 LHCb-CONF-2011-062

Photons identified in the ECAL

 $p_T^{\gamma} > 650 \text{ MeV/c}; \quad p^{\gamma} > 5 \text{ GeV/c}$ 

Photons converted before the magnet







LHCb : arXiv:1204.1462

Fraction of  $J/\psi$  from  $\chi_c$  states

$$\frac{\sigma(\chi_c \to J/\psi \gamma)}{\sigma(J/\psi)} \approx \frac{\sigma(\chi_c \to J/\psi \gamma)}{\sigma^{\rm dir}(J/\psi) + \sigma(\psi(2S) \to J/\psi X) + \sigma(\chi_c \to J/\psi \gamma)}$$

depends on signal yields ( $\chi_c$  and J/ $\psi$ ) and efficiencies (J/ $\psi$ ,  $\gamma$  and  $\chi_c$ ).

Photon efficiency checked using  $B^+ \rightarrow \chi_c K^+$  and  $B^+ \rightarrow J/\psi K^+$  decays







LHCb : arXiv:1204.1462

Fraction of J/ $\psi$  from  $\chi_c$  states:



#### Results in remarkable agreement with NLO NRQCD prediction

Ma, Wang & Chao, PRD 83 (2011) 111503

V.Gibson

ICHEP 2012, 4-11 July





Ratio of  $\chi_c$  spin states

$$rac{\sigma(\chi_{c2})}{\sigma(\chi_{c1})} = rac{N_{\chi_{c2}}}{N_{\chi_{c1}}} \cdot rac{\epsilon^{\chi_{c1}}}{\epsilon^{\chi_{c2}}} \cdot rac{\mathcal{B}(\chi_{c1} \ o \ J/\psi \ \gamma)}{\mathcal{B}(\chi_{c2} \ o \ J/\psi \ \gamma)},$$

depends on  $\chi_c$  signal yields and ratios of efficiencies.





Heavy Onia :  $\chi_{h}$ 

 $\chi_b$  (J=0,1,2) mass differences comparable with experimental resolution.

ICHEP 2012, 4-11 July



*LHCD* ГНСР





Fraction of 
$$\Upsilon$$
(1S) from  $\chi_{b}$ (1P) decays  $f_{\chi_{\delta} \to \Upsilon} = \frac{N_{\chi_{\delta}}}{N_{\Upsilon}} \times \frac{1}{\varepsilon_{\chi_{\delta}}}$ 

LHCb-PAPER-2012-015

depends on signal yields and efficiency to reconstruct and select  $\chi_{\rm b}$  after Y(1S) candidate is selected  $\varepsilon_{\gamma_{\star}} = (9.4 \pm 0.08)\%$ 

$$f_{\chi_b \to \Upsilon} = \left( 20.7 \pm 5.7 \, (stat.) \pm 2.1 \, (syst.) \stackrel{+2.7}{-5.4} \, (pol.) \right)$$





CDF pp collisions  $v_s=1.8$  TeV,  $p_T>8$  GeV/c  $f_{\gamma_{A} \to \gamma} = (27.1 \pm 6.9 \pm 4.4)\%$ 

CDF: PRL 84 (2000) 2094

**Total uncertainty** incl. polarization





LHCb-CONF-2012-020

Observation of  $\chi_b(3P)$ 

$$\chi_{bJ}(nP) \to \Upsilon(1S)\gamma$$

Select  $\Upsilon$ (1S) and  $p_T(\mu^+\mu^-\gamma) > 20 \text{ GeV/c}$ 









LHCb is producing many important quarkonia results:

 Cross-section measurements, signal for Double Parton Scattering and heavy quarkonia

Short – medium term expect new measurements:

- Cross-sections (@ 2.76, 8, 14 TeV ), polarisations, double onia (J/ $\psi$   $\psi$ (2S), J/ $\psi$ Y, YY) and  $\chi_b$ 

An upgraded LHCb detector (from 2018) opens up new & exciting possibilities:

- Precision studies of Double Parton Scattering, search for Triple Parton scattering
- Production studies with hadronic decays of quarkonia ( $pp, \phi\phi$ )

LHCb has a world class quarkonia program !



### Questions ?









Theory references for quarkonia production

 $J/\psi$  and  $\Upsilon$  Ma, Wang and Chao; PRL 106 (2011) 042002

#### ψ(2**S**)

Ma, Wang and Chao; arXiv:hep-ph/1012.1030 Kniehl and Butenschoen; PRL 106 (2011) 022003 and private comm. Artoisenet et al; PRL 101 (2008) 152001 Lansberg; EPJC 61 (2009) 693

#### Quarkonia at 8 TeV



B fractions







Comparison of expected J/ $\psi$  cross-sections in LHCb at 7 and 8 TeV





### $J/\psi$ Polarization



Measurement of  $J/\psi$  polarization needed to

- Understand failure of NRQCD predictions
- Largest error on cross-section & feed-down

Polarization described by 3 parameters

 $\lambda_{\scriptscriptstyle\partial},\ \lambda_{\scriptscriptstyle\phi}\ ext{and}\ \lambda_{\scriptscriptstyle\partial\phi}$ 



#### Extract from a fit to the angular distribution of the positive lepton

$$\frac{d^2 N}{d(\cos \vartheta) d\phi} = 1 + \lambda_{\vartheta} \cos^2 \vartheta + \lambda_{\phi} \sin^2 \vartheta \cos 2\phi + \lambda_{\vartheta\phi} \sin 2\vartheta \cos \phi$$

$$\theta = \text{polar angle between } \mu^+ \text{ in } J/\psi \text{ rest frame & } J/\psi \text{ flight direction}$$

$$\phi = \text{azimuthal angle between } J/\psi \text{ production plane and } \mu^+ \text{ plane}$$



## $J/\psi$ Polarization



LHCb strategy:

- Measure polarization by extracting  $\lambda_{\vartheta}$ ,  $\lambda_{\phi}$  and  $\lambda_{\vartheta\phi}$  using an unbinned maximum likelihood fit to the  $\mu^+$  angular distribution
- Results will be given in bins of J/ $\psi$  p<sub>T</sub> and y (2 < p<sub>T</sub> < 15 GeV/c)



Polarization of prompt and non-prompt J/ $\psi$  available very soon.





Ratio of  $\chi_c$  spin states

 $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ 







#### Fraction of $\Upsilon$ (1S) from $\chi_b$ (1P) decays

LHCb-PAPER-2012-015

#### Versus p<sub>T</sub>

| ${p_{\mathrm{T}}}^{\varUpsilon(1S)}(\mathrm{GeV}\!/c)$ | 6 - 7         | 7 - 8         | 8 - 10         | 10 - 15        | 6 - 15         |
|--------------------------------------------------------|---------------|---------------|----------------|----------------|----------------|
| $N_{ m rec}(\chi_b)$                                   | $41.3\pm39.4$ | $35.2\pm21.5$ | $91.5\pm30.0$  | $82.7\pm29.4$  | $201.1\pm55.2$ |
| $\epsilon_{	ext{conditional}}(\chi_b)$ in %            | $6.68\pm0.15$ | $8.28\pm0.19$ | $10.04\pm0.15$ | $12.78\pm0.18$ | $9.40\pm0.08$  |
| Fraction in %                                          | $22.7\pm21.6$ | $19.5\pm11.9$ | $31.6\pm10.4$  | $24.6\pm8.8$   | $20.7\pm5.7$   |
|                                                        |               |               |                |                |                |

#### Systematic Uncertainties

| Source                              | Uncertainty      |  |
|-------------------------------------|------------------|--|
| Unknown $\chi_{bJ}(1P)$ mixture     | 7%               |  |
| Photon reconstruction efficiency    | 5.5%             |  |
| Background description              | 5%               |  |
| Quadratic sum of the above          | 10%              |  |
| 100% polarization of $\Upsilon(1S)$ | $^{+13}_{-26}\%$ |  |