ATLAS measurements of WW, WZ, and ZZ production

C. Hays, Oxford University for the ATLAS Collaboration

6 July 2012

Diboson production at the LHC

Probes gauge-boson self-couplings & interference in new energy regime

Measurements constrain modelling of backgrounds to Higgs (and other) searches

Can provide a calibration source for (boosted) dijet resonances

Diboson measurements at ATLAS

 $WW \rightarrow lv lv: 4.7 \text{ fb}^{-1} \text{ at 7 TeV}$

 $WZ \rightarrow lv ll : 4.6 \text{ fb}^{-1} \text{ at 7 TeV}$

 $ZZ \rightarrow llvv: 4.7 \text{ fb}^{-1} \text{ at 7 TeV}$

 $ZZ \rightarrow llll: 4.7 \text{ fb}^{-1} \text{ at 7 TeV}$ 5.8 fb⁻¹ at 8 TeV

ATLAS diboson measurement strategy

Measure cross section within a fiducial region

$$\sigma_{\rm fid} = \frac{N_{\rm data} - N_{\rm bg}}{\mathcal{L}C_{WW}}$$

 C_{ww} : ratio of measured to produced WW events in fiducial region

Extrapolate to a total cross section

$$\sigma(pp \to WW) = \frac{N_{\text{data}} - N_{\text{bg}}}{A_{WW}C_{WW}\mathcal{LB}}$$

 A_{ww} : kinematic and geometric acceptance

B: branching ratio

Probe high-Q² events for anomalous triple-gauge couplings

$$\mathcal{L}_{WWV}/g_{WWV} = ig_1^V \left(W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V_{\nu} W^{\mu\nu} \right)$$

$$+ i\kappa_V W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} + \frac{i\lambda_V}{m_W^2} W_{\lambda\mu}^{\dagger} W_{\nu}^{\mu} V^{\nu\lambda}$$

$$+ i\kappa_V W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} + \frac{i\lambda_V}{m_W^2} W_{\lambda\mu}^{\dagger} W_{\nu}^{\mu} V^{\nu\lambda}$$

$$SM: g_1^{V} = \kappa_V = 1;$$

 $\lambda_{V} = 0$

WW cross section

Select dilepton events with $m_{ll} \neq m_{z}$, large $E_{T,Rel}^{miss}$ and no jets

 $E_{\mathrm{T, Rel}}^{\mathrm{miss}} = \left\{ egin{array}{ll} E_{\mathrm{T}}^{\mathrm{miss}} imes \sin\left(\Delta\phi_{\ell,j}
ight) & \mathrm{if} \ \Delta\phi < \pi/2 \ E_{\mathrm{T}}^{\mathrm{miss}} & \mathrm{if} \ \Delta\phi \geq \pi/2 \end{array}
ight.$

Fiducial cross sections

Channels	expected σ^{fid} (fb)	measured σ^{fid} (fb)	$\Delta\sigma_{stat}$ (fb)	$\Delta\sigma_{syst}$ (fb)	$\Delta\sigma_{lumi}$ (fb)
evev	44.9±3.7	41.4	\pm 6.5	\pm 5.7	± 1.6
μνμν	38.0 ± 3.1	48.2	\pm 4.6	± 3.8	± 1.9
evμv	237.4 ± 19.4	284.9	\pm 12.7	\pm 14.1	± 11.1

Total cross section consistent with MCFM prediction of 45.1 ± 2.8 pb

Channels	Total cross-section (pb)	$\Delta\sigma_{stat}(pb)$	$\Delta\sigma_{syst}(pb)$	$\Delta\sigma_{lumi}(\mathrm{pb})$
evev	41.5	± 6.5	± 7.8	± 1.6
μνμν	57.3	± 5.5	\pm 5.4	± 2.2
ενμν	54.3	± 2.4	\pm 4.4	± 2.1
Combined	53.4	± 2.1	± 4.5	± 2.1

Anomalous couplings from WW events

Fit for anomalous couplings using distribution of leading lepton p_{T} (1 fb⁻¹)

$$\lambda(s) = \lambda / (1 + s/\Lambda^2)^2$$

Anomalous couplings have largest effect at high $p_{_{\rm T}}$

Limits set in LEP, HISZ, and Equal Coupling scenarios

WZ total cross section

Select events with lepton pairs with mass ~ m_z , an additional lepton, and large E_T^{miss}

317 candidates, 68 ± 8 background

	eee	μee	$e\mu\mu$	$\mu\mu\mu$
$N_{ m obs}$	56	75	78	108
$N_{\rm sig}$	38.9 ± 2.1	54.0 ± 2.2	56.6 ± 1.7	81.7 ± 2.1
$N_{\mathbf{bkg}}$	14.5 ± 2.1	11.5 ± 1.9	21.0 ± 2.7	21.0 ± 4.2

Total cross section consistent with SM prediction: 17.6^{+1.1} pb

$$\sigma_{WZ}^{\text{tot}} = 19.0^{+1.4}_{-1.3}(\text{stat}) \pm 0.8(\text{syst}) \pm 0.4(\text{lumi}) \text{ pb}$$

WZ fiducial cross section

Measure both inclusive fiducial cross section and unfolded differential cross sections:

$$\sigma_{WZ}^{\text{fid}} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{\int \mathcal{L} dt \cdot C_{WZ}} \left(1 - \frac{N_{\tau}^{\text{MC}}}{N_{\text{sig}}^{\text{MC}}} \right) \qquad \sigma_{WZ}^{\text{fid}} = 92^{+7}_{-6} (\text{stat}) \pm 4 (\text{syst}) \pm 2 (\text{lumi}) \text{ fb}$$

Anomalous couplings from WZ events

Fit $Z p_T$ distribution for anomalous couplings

Probes anomalous *WWZ* couplings specifically

ZZ cross section

llvv channel:

Select dilepton events with $m_{ll} \sim m_{z}$, large axial E_{T}^{miss} , small $p_{T}^{ll} - E_{T}^{miss}$ difference, and no jets

Final State	$e^+e^-\nu\bar{\nu}$	$\mu^+\mu^-\nu\bar{\nu}$	$\ell^+\ell^-\nu\bar{\nu}$
Observed	33	45	78
Expected ZZ	$19.3 \pm 0.5 \pm 1.2$	$23.0 \pm 0.6 \pm 0.9$	$42.3 \pm 0.8 \pm 1.8$
Total Background	$18.0 \pm 2.0 \pm 1.6$	$22.7 \pm 2.4 \pm 2.1$	$40.7 \pm 4.3 \pm 3.7$

$$\begin{split} \sigma^{\text{fid}}_{ZZ\to\ell^+\ell^-\nu\bar{\nu}} &= 12.2^{+3.0}_{-2.8}(\text{stat.}) \pm 1.9(\text{syst.}) \pm 0.5(\text{lumi.}) \text{ fb} \\ \sigma^{\text{tot}}_{ZZ} &= 5.4^{+1.3}_{-1.2}(\text{stat.})^{+1.4}_{-1.0}(\text{syst.}) \pm 0.2(\text{lumi.}) \text{ pb} \end{split}$$

C. Hays, Oxford University

SM
$$\sigma_{zz}$$
: 6.5^{+0.3} pb

ZZ cross section

Illl channel: Select events with four leptons with two $m_{ij} \sim m_{ij}$

7 TeV

Final state	eeee	μμμμ	ееµµ	combined (llll)
Observed	15	21	26	62
Signal(MC)		$16.6 \pm 0.6 \pm 0.3$	$26.8 \pm 0.8 \pm 1.0$	53.2 ± 1.1 ± 1.9
Bkg(d.d.)	$0.6^{+0.7}_{-0.6}$	$< 0.3^{+0.5}_{-0.2}$	$0.3^{+0.9}_{-0.3}^{+0.9}_{-0.3}^{+0.8}$	$0.7^{+1.3}_{-0.7}^{+1.3}_{-0.7}$

$$\sigma_{ZZ \to \ell^+ \ell^- \ell^+ \ell^-}^{\text{fid}} = 21.2^{+3.2}_{-2.7} \text{ (stat)} ^{+1.0}_{-0.9} \text{ (syst)} \pm 0.8 \text{ (lumi) fb}$$

$$\sigma_{ZZ}^{\text{tot}} = 7.2^{+1.1}_{-0.9} \text{ (stat)} ^{+0.4}_{-0.3} \text{ (syst)} \pm 0.3 \text{ (lumi) pb}$$

SM σ_{zz} : 6.5^{+0.3} pb

6 July, 2012

C. Hays, Oxford University

ZZ cross section

Illl channel: Select events with four leptons with two $m_{\parallel} \sim m_{Z}$

8 TeV

Final state	$e^{+}e^{-}e^{+}e^{-}$	$\mu^+\mu^-\mu^+\mu^-$	$e^+e^-\mu^+\mu^-$	$\ell^+\ell^-\ell'^+\ell'^-$	$\sigma_{ZZ \to \ell^+ \ell^- \ell'^+ \ell'^-}^{\text{fid}} = 21.0^{+2.4}_{-2.2}(\text{stat.})^{+0.6}_{-0.5}(\text{syst.}) \pm 0.8(\text{lumi.}) \text{ fb}$
Observed	23	22	40	85	
Signal (MC)	16.5 ± 0.8	20.9±0.4	33.2±0.9	70.5 ± 1.7	$\sigma_{ZZ}^{\text{tot}} = 9.3^{+1.1}_{-1.0}(\text{stat.})^{+0.4}_{-0.3}(\text{syst.}) \pm 0.3(\text{lumi.}) \text{ pb.}$
Background (d.d.)	$0.6\pm0.4\pm0.2$	$0.1^{+0.6}_{-0.1}\pm0.1$	$0.6^{+0.9}_{-0.6} \pm 0.3$	$1.3\pm1.2\pm0.5$	22 -1.0 -0.5 7

6 July, 2012

C. Hays, Oxford University

SM σ_{zz} : 7.4 ± 0.4 pb

Summary

Diboson cross sections measured using full 7 TeV data sets in leptonic decay channels

First unfolded differential cross sections in fiducial region measured in WZ production

Anomalous-coupling limits set with 7 TeV data

First ATLAS diboson measurement at 8 TeV in $ZZ \rightarrow llll$ production

New energy regime for probing self-couplings of electroweak bosons

