W/Z+γ measurement @ ATLAS

Liang HAN
University of Science & Technology of China (USTC)
On behalf of ATLAS Collaboration

ICHEP2012
Melbourne, Australia
Motivation

- \(W(l\nu)/Z(ll)+\gamma \) production measurement:
 - ISR: t/u-channel
 - s-channel TGC
 - FSR
 - Gluon/quark fragmentation

- Searching anomalous triple gauge couplings (aTGC):
 - W magnetic dipole and electric quadrupole moment
 \[
 \mu_W = \frac{e}{2M_W} (2 + \Delta \kappa_\gamma + \lambda_\gamma)
 \]
 \[
 Q_W = -\frac{e}{M_W^2} (1 + \Delta \kappa_\gamma - \lambda_\gamma)
 \]
 - \(ZZ\gamma/Z\gamma\gamma \) prohibited by SM

- Prior-LHC results
 + D0, 4.2 fb\(^{-1}\) \(W\gamma \), PRL107(2011)241803

+ CDF, 5 fb\(^{-1}\) \(Z\gamma \), PRL107(2011)051802
+ D0, 6.2 fb\(^{-1}\) \(Z\gamma \), PRD85(2012)052001
Event Selection

- **ATLAS 7TeV 1fb$^{-1}$ (35pb$^{-1}$) data:**
 - Lepton:
 + e/μ p_T>25GeV, detector fiducial $|\eta|$ coverage; isolated in calorimeter;
 + Tight electron identification
 - W/Z events:
 + MET>25GeV, MT($l\nu$)>40GeV; M(ll)>40GeV
 - Photon:
 + p_T>15GeV, detector fiducial $|\eta|$ coverage;
 + Isolated in calorimeter
 + Tight photon identification
 + FSR suppression $dR(l,\gamma)>0.7$
 + Simulation corrected to $Z \rightarrow ll\gamma$ data
 - Jet:
 + p_T>30GeV, $|\eta|<4.4$, $dR(j,\gamma/lepton)>0.6$
 - Inclusive (≥0jet) vs.
 - Exclusive (==0jet)

- ✓ ATLAS 35pb$^{-1}$ result as JHEP 1109,072
- ✓ ATLAS 1.02fb$^{-1}$ result as arXiv:1205.2531
ISR/FSR vs. $p_T(\gamma)$ cut:

ISR: $M(ll\gamma) > M_Z$

FSR: $M(ll\gamma) \leq M_Z$

High photon p_T cut to suppress FSR as

$Z\gamma$: $p_T(\gamma) > 15, \ 60\text{GeV}$; $W\gamma$: $p_T(\gamma) > 15, \ 60, \ 100\text{GeV}$
Electroweak background derived from simulation

Dominant background, $W+jet$ has to be estimated from data
W/Z+jet background

- 2D sideband jet → “γ” background estimation:

 - **Photon Identification**: based on calorimeter shower-shape

 - **Photon Isolation**:

 \[\text{Iso} E_T^{30} = \left[\sum_{dR<0.3} E_T^i \right] - E_T^\gamma \]

- Standard Photon Identification
 - (Isolated)
 - (Non-isolated)
 - C
 - (Control Region)
 - A
 - (Signal Region)
 - D
 - (Control Region)

- Background estimation:

 \[N_A = N_{W\gamma}^A + N_{W\text{jet}}^A \]

 \[N_{B/C/D} = N_{B/C/D}^{W\text{jet}} \]

 \[N_{A}^{W\text{jet}} = N_{B}^{W\text{jet}} \cdot \frac{N_{C}^{W\text{jet}}}{N_{D}^{W\text{jet}}} \]
Jet+γ background in $W\gamma$

- Date-driven jet \Rightarrow “e/μ” estimation:
 1) jet+γ: real γ; non-isolated lepton from heavy b/c decay;
 2) Control region: MET<20GeV to extract faked “e/μ” isolation shape

![Graph showing MET vs. isolation 2-d sideband for W(ev)γ events.](chart.png)
Photon E_T spectrum:

$W(l\nu)\gamma$ inclusive

$Z(ll)\gamma$ inclusive

* Signal distribution normalized to the number of extracted data
Number of jet distribution:

\[Z(ll)\gamma : p_T(\gamma) > 60\text{GeV} \]

\[W(l\nu)\gamma : p_T(\gamma) > 100\text{GeV} \]

Inclusive (\(\geq 0\text{jet}\)) vs. Exclusive (\(= 0\text{jet}\))
Cross section measurement

\[\sigma_{pp \rightarrow l\nu \gamma(l+l-\gamma)}^{\text{ext-fid}} = \frac{N_{W\gamma(Z\gamma)}^{\text{sig}}}{A_{W\gamma(Z\gamma)} \cdot C_{W\gamma(Z\gamma)} \cdot L} \]

- Detector Acceptance
- Experimental selection efficiency
- Luminosity \(1.024 \pm 3.8 \text{ fb}^{-1}\)

- Unfold detector efficiency:
 + Correction factor \(C_{W\gamma(Z\gamma)} \sim 40 - 60\%\)
 + Systematic \(\delta_C \sim 10\%\), dominated by photon identification & jet energy scale
Compared against MCFM

- Compare to SM prediction:
 - Estimated from Alpgen/Sherpa
 - + Extend detector fiducial to a uniform lepton $|\eta|$ coverage
 - + Theoretical uncertainty on acceptance $\delta_{Theo.} \sim 1-3\%$

Unfold for detector acceptance:

- $A_{W(Z)\gamma} = \frac{N_{\text{fiducial}}}{N_{\text{extended-fiducial}}}$

- Compared against **MCFM** (ISR + FSR + QCD NLO)
Differential cross sections

1) Photon $p_T > 15, 60, 100$ GeV; 2) Inclusive (≥ 0 jet) vs. Exclusive (=0 jet)

- The Exclusive measurements are consistent with MCFM predictions (SM NLO)
- The $W\gamma$ Inclusive are higher than MCFM, especially in high $p_T(\gamma)$ region → high order effects (NNLO and beyond)
Anomalous couplings

$+ \alpha_{\text{TGC}} h_{3/4}^{V} : ZV\gamma$ electric dipole / magnetic quadrupole transition moment

$+ \text{non-zero } \alpha_{\text{TGC}} \text{ will result in increasing of } W/Z+\gamma \text{ cross section, especially in high photon } p_T \text{ region}$

$h_i^V = \frac{h_{i0}^V}{(1 + \hat{s} / \Lambda^2)^n}$
Extract $ZV\gamma$ aTGC:

- Exclusive $E_T(\gamma)^{>60\text{GeV}}$ measurement $\sigma_{Z\gamma}^{\text{obs}}$ against aTGC hypotheses $\sigma_{Z\gamma}^{\text{aTGC}}$

+ Bayesian probability with nuisance parameters to set limits
Extract $WW\gamma$ aTGC:

$WW\gamma$ aTGC: $\Delta\kappa_\gamma, \lambda_\gamma$

Exclusive $E_T(\gamma) > 100\text{GeV}$ measurement $\sigma_{WW\gamma}^{\text{obs}}$ against aTGC $\sigma_{WW\gamma}^{\text{aTGC}}$ hypotheses
The differential cross section $W(l\nu)\gamma/Z(ll)\gamma$ measured @ 1fb$^{-1}$ 7TeV ATLAS:

- Exclusive (=0jet) measurement is consistent with SM NLO
- High order effect (NNLO and beyond) is observed in $W\gamma$ inclusive (\geq0jet) data, especially in high photon $p_T(\gamma)>60\text{GeV}$ region

Limits on anomalous TGC couplings derived from high photon p_T spectrum:

- $WW\gamma$ aTGC results better than the existing Tevatron limits
Backup slides
Signal event yield

- **W(lν)γ:**

<table>
<thead>
<tr>
<th>Region</th>
<th>$E_T^γ > 15$ GeV</th>
<th>$E_T^γ > 15$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$N_{jet} \geq 0$</td>
<td>$N_{jet} = 0$</td>
</tr>
<tr>
<td>$N^{obs}_{Wγ}$</td>
<td>2649</td>
<td>3621</td>
</tr>
<tr>
<td>$W + jets$</td>
<td>439 ± 108</td>
<td>685 ± 162</td>
</tr>
<tr>
<td>$γ + jets$</td>
<td>255 ± 58</td>
<td>67 ± 16</td>
</tr>
<tr>
<td>EW</td>
<td>405 ± 53</td>
<td>519 ± 67</td>
</tr>
<tr>
<td>tt</td>
<td>85 ± 11</td>
<td>152 ± 20</td>
</tr>
<tr>
<td>$N^{sig}_{Wγ}$</td>
<td>1465 ± 139</td>
<td>2198 ± 183</td>
</tr>
</tbody>
</table>

- **Z(υυ)γ:**

<table>
<thead>
<tr>
<th>Region</th>
<th>$E_T^γ > 15$ GeV</th>
<th>$E_T^γ > 15$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$N_{jet} \geq 0$</td>
<td>$N_{jet} = 0$</td>
</tr>
<tr>
<td>$N^{obs}_{Zγ}$</td>
<td>514</td>
<td>634</td>
</tr>
<tr>
<td>$Z + jets$</td>
<td>43.7 ± 16.5</td>
<td>56.8 ± 16.2</td>
</tr>
<tr>
<td>$N^{BG}_{Zγ}$</td>
<td>471 ± 28</td>
<td>578 ± 29</td>
</tr>
<tr>
<td>$N^{sig}_{Zγ}$</td>
<td>471 ± 28</td>
<td>578 ± 29</td>
</tr>
</tbody>
</table>

- Dominate background as $W+jet(“γ”), γ+jet (“e”), Z(υυ)$

- Dominate background as $Z+jet$