

Searches for Supersymmetry at CMS in Final States with Photons

Mike Hildreth

Université de Notre Dame du Lac

representing the CMS Collaboration

5 July, 2012

Mike Hildreth - ICHEP 2012

CMS PAS SUS-12-018

Overview

- Gauge-mediated SUSY Breaking (GMSB)
 - SUSY couples to normal matter through gauge interactions
 - Gravitino: LSP
- General Gauge Mediation (GGM) e.g.: P. Meade, N. Seiberg, D. Shih, arXiv:0801.3278v3
 - neutralino NLSP a mixture of Bino, Wino, and Higgsino
 - photon/Z+Gravitino or W+Gravitino final states
 - one or two photons + MET
 - focus on strong production: many jets
- CMS: Two independent analyses:
 - 1. Single photon + MET + jets
 - 2. Di-photon + MET (+ jets)

Updated here with 4fb⁻¹ of 8 TeV data from 2012 running

Will also show results from 2011

5 July, 2012

Mike Hildreth - ICHEP 2012

Public Documents: CMS PAS SUS-12-001, SUS-12-018

GGM Phenomenology at the LHC

Neutralino NLSP mixture of Bino, Wino, and Higgsino, e.g.,

- Bino-like NLSP: $\tilde{\chi}_1^0 \rightarrow \gamma + G \text{ or } \tilde{\chi}_1^0 \rightarrow Z^0 + G$
- Wino-like (co-)NLSP: $\tilde{\chi}_1^0 \rightarrow \gamma + G \text{ or } \tilde{\chi}_1^0 \rightarrow Z^0 + G$ and/or $\tilde{\chi}_1^{\pm} \rightarrow W^{\pm} + G$
- Bino-Higgsino-like NLSP: $\tilde{\chi}_1^0 \rightarrow \gamma + G \text{ or } \tilde{\chi}_1^0 \rightarrow Z^0 + G$ and/or $\tilde{\chi}_1^0 \rightarrow h + G$

★ MET is defining signature

- R-parity is conserved:
 - 2 LSPs per event

5 July, 2012

Mike Hildreth - ICHEP 2012

UNIVERSITY OF NOTRE DAME

Photons	Jets	*	MET	∫Ldt	
=1 E _T > 80 GeV	≥ 2, H _T > 450* p _T > 30 GeV	* GeV	> 100 GeV	4.0 fb ⁻¹	
$E_{iso}(0.3) < 6 \text{ GeV}$	η < 2.6	* particle flow	jets, anti-kT (R=0.5)), photon-reject	ed
$ \eta < 1.442$		** scalar sum	of p_T of all jets with	p_T >40 GeV, $ \eta $	< (
		no photon re	ejection		

Photons	Jet	S*	MET	∫Ldt	
=2 E _T > 40, 25 GeV E _{iso} ^{**} (0.3) < 6 GeV η < 1.442	≥ 1 p _T > 30 GeV η < 2.6	* particle flow	> 100 GeV jets, anti-kT (R=0.5) riables corrected for	4.0 fb ⁻¹), photon-reject pileup effects	ted in al
	-	photon sele	ctions	-	

Estimating Standard Model Backgrounds

Analysis	Fake Photons - QCD (jets)	Fake Photons - EWK (electrons)	Irreducible - (photons)
γ + Jets + MET	$\gamma + jet j \rightarrow \gamma$		
$\gamma + \gamma + \text{Jets} + \text{MET}$	γ + jet j → γ		

Dominant Background

Sub-dominant Background

Negligible Background

5 July, 2012

Mike Hildreth - ICHEP 2012

Data-Driven

methods

QCD Backgrounds

EM 2

di-EM p_T

iets

EM 1

QCD sources: no intrinsic MET

- MET from mis-reconstruction of non-photon event objects
- select QCD-enriched control samples in data
 - "fake" photons that look very similar to final candidates
 - fail "tight" selections, but pass looser criteria:
 - "fake" fails tight isolation or shower shape cuts
 - single photon fake $\gamma \equiv \gamma_{jet}$, di-photon: fake $\gamma \equiv f$
- (di-)photon system is well-measured \rightarrow
 - 1. reweight (di-)photon E_T spectrum for control sample to match signal sample
 - 2. normalize MET spectrum of control distribution to match target "signal" in low MET region
 - single photon: γ_{jet} normalized to γ spectrum for photon MET < 100 GeV
 - di-photon: fake-fake distribution normalized to $\gamma\gamma$ spectrum for MET<20 GeV

QCD Backgrounds

- The resulting MET distribution is taken as the background due to mis-measurement of hadronic energy in QCD events
- systematic errors due to shape estimation, possible signal contamination
- di-photon analysis uses Drell-Yan ee events to estimate an independent shape error

Estimating Standard Model Backgrounds

Analysis	Fake Photons - QCD (jets)	Fake Photons - EWK (electrons)	Irreducible - (photons)
γ + Jets + MET	$\gamma + jet \\ j \rightarrow \gamma$	W, top (e→γ)	
γ + γ + Jets + MET	$\gamma + jet \\ j \rightarrow \gamma$	W+γ, W+jet (e→γ, j→γ)	

Dominant Background

Sub-dominant Background

Negligible Background

Data-Driven methods

EWK Backgrounds

• Compare $Z \rightarrow ee$ events to $Z \rightarrow e\gamma$ events to obtain $e \rightarrow \gamma$ fake rate:

- Ratio of signals used to estimate fake rate $f_{e \rightarrow \gamma}$
 - average value: $f_{e \rightarrow \gamma} = 0.0181 \pm 0.0003(\text{stat}) \pm 0.0009(\text{syst})$
 - Single photon analysis uses $p_T > 80$ GeV:
 - $f_{e \to \gamma} = 0.011 \pm 0.002(\text{stat}) \pm 0.001(\text{syst})$
- Inclusive electron spectrum scaled by $f_{e \rightarrow \gamma}$ to obtain EWK background

Estimating Standard Model Backgrounds

Analysis	Fake Photons - QCD (jets)	Fake Photons - EWK (electrons)	Irreducible - (photons)
γ + Jets + MET	$\gamma + jet j \rightarrow \gamma$	W, top (e→γ)	ISR/FSR W/Z/top + γ
γ + γ + Jets + MET	$\gamma + jet j \rightarrow \gamma$	W+γ, W+jet (e→γ, j→γ)	$W/Z + \gamma\gamma$

Dominant Background

Sub-dominant Background

Negligible Background

Mike Hildreth - ICHEP 2012

Data-Driven

methods

Data-Driven

methods

Simulation

A nice di-photon event

photon

MET

CMS Experiment at LHC, CERN Data recorded: Tue May 15 01:44:25 2012 CEST Run/Event: 194151 / 74934725 Lumi section: 76 Orbit/Crossing: 19726567 / 1553

photon

MET=142.8, $\gamma_1 p_T$ =132.5, $\gamma_2 p_T$ =132.1

MET=142.8, γ_1 p_T=132.5, γ_2 p_T=132.1

5 *Fuid*ay201412e 29, 2012

² Mike Hildreth - ICHEP 2012

RESULTS & INTERPRETATION

5 July, 2012

Single Photon MET Spectrum

Di-Photon MET Spectrum

Limit Calculations

Systematic Errors

- Integrated luminosity: 5%
- cross section uncertainties from PDFs: 4-66%
- renormalization scale uncertainty from SUSY masses: 4-28%
- Theory errors: scale and PDF errors are combined at each point and cross section varied by 1σ .
- single-photon analysis includes an extra 3% trigger efficiency uncert.
- Limit Calculation:
 - CL_S method with likelihood-ratio test statistics at 95%
 - full propagation of errors
 - GGM Signal Monte Carlo (grid scan)
 - Prospino used for NLO cross-sections

Interpretation: Bino-like NLSP

"Bino like" GGM scan: $m_{\chi 0}$ =375 GeV, $m_{squark,gluino}$ =400...2000 GeV, steps 80 GeV, ~ 10000 Events/point

 Sleptons and all gauginos except NLSP: 3.5 TeV, heavy right handed squarks

(17)

Interpretation: Wino-like NLSP

CMS

 γ + MET + \geq 2 jets

"Wino like" GGM scan: Sleptons & gauginos (except NLSP):3.5 TeV

- heavy right handed squarks
- NLSP mass = 375 GeV

γ + MET + ≥2 jets

Interpretation: Extra Dimensions

- CMS
- MET + photon(s) signature can also result from the production of KK-towers of quarks or gluons
 - lightest KK tower (LKP) decays gravitationally, resulting in final states with a photon and a Gravitino
- UED model: embedded in N extra dimensions with $R\Lambda$ = 20, gravitational decay widths are set by N and M_D (M_D = 5 TeV)

5 July, 2012

(19)

Summary

- Final states with large missing energy and photons expected in SUSY GMSB scenarios
 - Branching ratios to photons depend on NLSP admixture
- CMS analyses designed to cover a broad range of final states
 - $-\gamma$ + Jets + MET
 - Updated here with 4fb⁻¹ of 8 TeV - γγ + Jets + MET | data from 2012 running
 - Data-driven background estimates for QCD/EWK sources
 - no excesses seen over SM predictions
- Exclusion limits set in bino- and wino-like neutralino NLSP:
 - bino-like: $m_{squark} < 1.2 \text{ TeV}$, $m_{qluino} < 1.1 \text{ TeV}$ excluded
 - wino-like: m_{squark} < 900 GeV, m_{qluino} < 800 GeV excluded
- UED interpretation: 1/R < 1300 TeV excluded
- Coming soon:
 - limits for EW production

Simplified models: T1gg and T1lg

Additional Slides

5 July, 2012

- Gauge Mediation, review and history:
 - G. F. Giudice and R. Rattazzi, Phys. Rept. 322, 419 (1999)
 - P. Fayet, Phys. Lett. **B70** (1977) 461
 - H. Baer, M. Brhlik, C. H. Chen et al., Phys. Rev. **D55** (1997) 4463
 - S. Dimopoulos, S. Thomas, and J. D. Wells, Nucl. Phys. **B488** (1997) 39
 - J. R. Ellis, J. L. Lopez, and D. V. Nanopoulos, Phys. Lett. B394 (1997) 354
- Direct Mediation:
 - I. Affleck, M. Dine and N. Seiberg, Nucl. Phys. B 256, 557 (1985)
- Weakly-coupled MSSM-charged messenger fields plus SUSY-breaking spurions:
 - e.g., M. Dine, A. E. Nelson, Y. Nir and Y. Shirman, Phys. Rev. **D 53**, 2658 (1996)
- Weakly-coupled SUSY-breaking fields with global symmetry:
 - e.g., K. I. Izawa, Y. Nomura, K. Tobe and T. Yanagida, Phys. Rev. D 56, 2886 (1997)
- Other formulations of General Gauge Mediation:
 - A. G. Cohen, T. S. Roy and M. Schmaltz, **JHEP** 0702, 027 (2007)

Interpretation: Simplified Models

These analyses can be applied to two related simplified models

- Pair production of gluinos, decay to jets and χ^{\pm} or χ^0
 - T1gg: both gluinos decay to jets + χ^0 , $\chi^0 \rightarrow G\gamma$
 - Both single and di-photon analyses sensitive
 - T1lg: one gluino decays to χ^{\pm} , $\chi^{\pm} \rightarrow$ W+X, W \rightarrow jets
 - Single photon analysis only

Object Definitions

- In general, all objects are Particle Flow objects (except photons)
- Jets are corrected for
- MET is corrected for Jet Energy Scale
- Photon ID: (optimized for photons in jetty environment)
 - Comblso (Ecal + Hcal + Track) < 6 GeV</p>
 - shower shape:
 - σ_{iηiη} < 0.011
 - H/EM < 0.05
 - R9 (E_{center}/E_{3x3}) < 1.0
 - No PixelSeed (track) in road between EM cluster and IP
 - Electrons: require pixel seed

Fake Photon Objects:

Same as photon, but

Comblso < min(30,0.3* p_T)

(Comblso > 6) || ($\sigma_{i\eta i\eta}$ > 0.011)

Di-Photon Analysis: Triggers

- Higgs→γγ triggers:
 - HLT_Photon36_CaloId10_Iso50_Photon22_CaloId10_Iso50 (*Signal*)
 - HLT_Photon36_CaloId10_Iso50_Photon22_R9Id85
 - HLT_Photon36_R9Id85_Photon22_CaloId10_Iso50
 - HLT_Photon36_R9Id85_Photon22_R9Id85
 - Where: CaloId10: h/e<0.1 && σ_{iηiη}<0.014
 - R9ld85: R9 > 0.85
 - Iso50:
 - EcallsoDR03 <5.0+Et*0.012
 - HcallsoDR03 <5.0+Et*0.005
 - TrackIsoDR03<5.0+Et*0.002

012

9

Pileup Corrections: Calo Isolation

Single-photon high-MET event

ICHEP2012 Melbourne

UNIVERSITY OF NOTRE DAME