

Search for SuperSymmetry with one lepton in the final state

(in CMS experiment at LHC centre of mass energy of 7 TeV)

Kajari Mazumdar
Tata Institute of Fundamental Research
Mumbai, India

On behalf of CMS collaboration, CERN

Production of SUSY particles at LHC

- •m_A → cross-section
- • $\Delta m_{AB} \rightarrow \Sigma$ jet energies
- •∆m_{BC} → lepton's momentum
- ∆m_{AC} → missing energy

No resonance production → SUSY events characterized by excess in the tails of kinematical distributions of Standard Model (SM) processes.

- → measuring background is the key.
- Benchmark points chosen in constrained MSSM (cMSSM):
- → To cover a range of topologies and large volumes of phase space.
- → Topology-based searches performed with robust and simple signatures which are common to a wide variety of models and to avoid problems of small branching fractions.

Search Strategy

Some of the benchmark points of cMSSM

Name	$m_0 \; (\mathrm{GeV}/c^2)$	$m_{1/2} \; ({\rm GeV}/c^2)$	A_0	$tan\beta$	$sign(\mu)$	$\sigma_{ m LO}$	$\frac{\sigma_{ m NLO}}{\sigma_{ m LO}}$
LM0	200	160	-400	10	+	38.93	1.41
LM3	330	240	0	20	+	3.438	1.40
LM6	85	400	0	10	+	0.3104	1.30

- Generic search utilizes selections categorized by number of leptons and jets.
 - Choose multijet events with large energy, define

$$H_{\rm T} = \sum_i p_{\rm T}^{j_i}$$

+ Large missing transverse energy ET

$$\mathbb{E}_{\mathrm{T}} = |\overrightarrow{\mathbb{E}_{\mathrm{T}}}|$$

$$\vec{E}_{\mathrm{T}} = -\sum \vec{p}_{\mathrm{T}}$$

- Requiring a lepton (e/μ) in the final state
- → QCD multijets events do not contribute much in the selected sample.
- In the characteristic distributions
- → Define *control* region dominated by SM background.
- →Estimate contribution of SM in *signal* region by extrapolation.
- → Data driven estimates of main background processes.

Single-lepton search

A) 1 lepton + ≥ 3jets + E_T

Several analyses with <u>complementary</u> methods for background estimation

→ lepton projection, lepton spectrum, neural network

CMS PAS- SUS-12-010, CMS PAS-SUS-11-026

B) 1 lepton +
$$\geq$$
 3jets + \geq 1- b-jet + $\not\!E_T$

Talk by A.Cakir

Backgrounds due to SM processes with real $\mathbb{E}_T \rightarrow$ essentially leptonic decays of W.

- \rightarrow W+jets (σ =28000 pb @ 7 TeV)
- \rightarrow tt (σ =157.5 pb @ 7 TeV)
- → Z+jets, single top, QCD multijet processes are less severe

Selections:

- Isolated e OR μ above 20 GeV/c, in central region
- Jets above 40 GeV in central region
- Lepton-jet separation > 0.3

Lepton spectrum method

In SUSY, **E**_T is independent of lepton and also much harder.

→ NOT the case in SM.

Use observed lepton p_T to predict E_T from SM at high end.

Events categorized in HT and **₹**_T bins

Event yields in 4.7 /fb for HT> 500 GeV

 (GeV)	predicted	observed (e,μ)
(250 - 350)	$159 \pm 13.8 \pm 17.8$	163 (84, 79)
(350 - 450)	$44.0 \pm 7.7 \pm 6.0$	46 (21,25)
(450 - 550)	$6.6 \pm 3.0 \pm 1.8$	9 (8,1)
>550	$4.3 \pm 2.6 \pm 1.6$	2 (1,1)

Data consistent with background

CMS-PAS-SUS-12-010

Lepton Projection method

CMS-PAS-SUS-12-010

$$L_P = \frac{\vec{p}_T(\ell) \cdot \vec{p}_T(W)}{|\vec{p}_T(W)|^2}$$

- •Lp peaks near zero for SUSY due to large **₹**_T relative to the lepton momentum.
- •SM processes have broad Lp distributions.

Signal region : Lp < 0.15

Control region: Lp>0.3

$$N_{SM}^{pred}(L_P < 0.15) = R_{CS}N_{data}(L_P > 0.3)$$

$$R_{CS} = \frac{N_{MC}(L_P < 0.15)}{N_{MC}(L_P > 0.3)}$$

Lepton projection in different ST bins

 Categorize events in terms of event's mass scale — (expect large S_T for SUSY) $S_{\mathrm{T}}^{\mathrm{lep}} = p_{\mathrm{T}}(\ell) + E_{\mathrm{T}}$

• For each S_T bin, fit background in control region to estimate rate in signal region.

CMS-PAS-SUS-12-010

Kajari Mazumdar

ICHEP, Melbourne

Exclusion in cMSSM parameter space in 1lepton+jets + Exchannel

CMS-PAS-SUS-12-010

Allows less stringent requirement on total energy in the event.

ANN based on # jets, H_T , $\Delta \phi$, m_T

 $m_{T} = \sqrt{(E_{T,lepton} + \cancel{E}_{T})^{2} - |\overrightarrow{p}_{T,lepton} + \overrightarrow{\cancel{E}_{T}}|^{2}}$

Background estimation using ANN

CMS-PAS-SUS-11-026

ANN trained with LM0 signal sample. Performance comparable with other points.

SM concentrated near low ANN values

→ 2 signal regions:

ANN>0.4, ₹_T > 500 GeV

ANN>0.4, 350 < **₹**_T < 500 GeV

Template for low ANN used for high ANN region

$$D_{pred} = \frac{B \times C}{A}$$

Exclusion in cMSSM space with neural network analysis

10-1

-0.2

0

0.6

0.8

ANN output

Data/Simulation

low $\not\!\!E_T$: 10 9.5 ± 2.2 high $\not\!\!E_T$: 1 0.7 ± 0.5

Data consistent with SM background

CMS-PAS-SUS-11-026

Kajari Mazumdar ICHEP, Melbourne July, 2012 Resort to Simplified Model Spectrum for current searches to be meaningful.

Assumptions:

- 1. Sparticles are produced in pairs.
- 2. A sparticle decays
 - (a) directly to a SM particles and LSP
- OR (b) to an on-shell sparticle which in turn decays to SM particles and LSP _

Gluino pair production

- + presence of one W in cascade decay of gluino
- + direct decay of other

Main parameter: mass splitting between gluino & LSP

→ Large difference provides high H_T

Conclusion

- CMS has completed analyses p-p collison data at centre of mass energy of 7 TeV
- Searches with only 1 lepton in the final state is reported with the major background rates (W+jets, tt) determined from collision data.
- With data corresponding to an integrated luminosity of about 5 fb⁻¹
 --till now no sign of SUSY.
- Analyses with data at 8 TeV, collected in 2012 is on going.
 - → stay tuned, exciting times ahead!

Details of work presented can be found at https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Backup

Event selection

Trigger:

- 1 lepton (p_T^{μ} >8 GeV/c OR p_T^{e} > 10 GeV/c) + HT (>200 GeV)
- Thresholds increased with instantaneous luminosity + E_T >30 GeV]

Event procelection	Quantity	Requirement	
Event preselection	Primary vertex position	$ ho_{\rm PV} < 2 { m cm}, z_{\rm PV} < 24 { m cm}$	
	Jet p _T threshold	> 40 GeV	
 E _T > 100 GeV	Jet η range	$ \eta < 2.4$	
HT > 500 GeV	Number of jets	\geq 3 (L _P Variable method),	
		≥ 4 (Lepton Spectrum method)	
Lepton-jet $\Delta r > 0.3$	Lepton p _T threshold	> 20 GeV	
. ,	Muon η range	$ \eta < 2.1$	
	Muon isolation (relative)	< 0.10	
	Electron η range	$ \eta < 1.4$, $1.6 < \eta < 2.4$	
	Electron isolation (relative)	< 0.07 (barrel), < 0.06 (endcaps)	
	Lepton p_T threshold for veto	> 15 GeV	

lepton isolation:
$$I_{\rm rel}^{\rm comb} = \sum_{\Delta R < 0.3} (E_{\rm T} + p_{\rm T})/p_{\rm T}(\mu)$$

Lepton Spectrum method

$\not\!\!E_{\mathrm{T}}$:	[250; 350)	[350; 450)	[450; 550)	≥ 550 GeV
MC:				
11	137.0 ± 2.0	32.5 ± 1.0	7.9 ± 0.5	2.7 ± 0.3
Dilepton	18.6 ± 0.5	3.5 ± 0.2	0.7 ± 0.1	0.3 ± 0.1
1 τ	28.6 ± 0.9	7.4 ± 0.5	1.9 ± 0.2	0.8 ± 0.2
Z+jets	1.2 ± 0.8	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Total SM (MC)	$185.4 \pm 2.3 (stat)$	$43.4 \pm 1.1(stat)$	$10.5 \pm 0.6 (stat)$	$3.7 \pm 0.4 (stat)$
SUSY LM3 (MC)	$248.6 \pm 3.5 (stat)$	$85.0 \pm 2.0 (stat)$	$21.7 \pm 1.0 (stat)$	$9.2 \pm 0.7 ({ m stat})$
SUSY LM6 (MC)	$21.9 \pm 0.3 (stat)$	$18.7 \pm 0.3 (stat)$	$12.5 \pm 0.2 (stat)$	$10.0 \pm 0.2 (stat)$
Data-driven prediction:				
11	$109.1 \pm 13.4 \pm 17.5$	$32.1 \pm 7.5 \pm 5.8$	$3.9 \pm 2.6 \pm 1.3$	$3.1 \pm 2.3 \pm 1.0$
Dilepton	$15.8 \pm 1.9 \pm 1.8$	$3.0 \pm 0.9 \pm 0.5$	$0.5 \pm 0.3 \pm 0.2$	$0.1 \pm 0.2 \pm 0.2$
1 τ	$33.0 \pm 1.8 \pm 1.7$	$8.9 \pm 1.0 \pm 0.5$	$2.1 \pm 0.5 \pm 0.2$	$1.1 \pm 0.3 \pm 0.2$
QCD	$0.0 \pm 1.2 \pm 1.2$	$0.0 \pm 1.2 \pm 1.2$	$0.0 \pm 1.2 \pm 1.2$	$0.0 \pm 1.2 \pm 1.2$
Z+jets	$1.2 \pm 0.8 \pm 1.2$	$0.0 \pm 0.0 \pm 0.0$	$0.0 \pm 0.0 \pm 0.0$	$0.0 \pm 0.0 \pm 0.0$
Total (predicted):	$159.1 \pm 13.8 \pm 17.8$	$44.0 \pm 7.7 \pm 6.0$	$6.6 \pm 3.0 \pm 1.8$	$4.3 \pm 2.6 \pm 1.6$
Data (observed):	163 (84, 79)	46 (21, 25)	9 (8, 1)	2 (1, 1)

Lepton Projection Method

Event yield in muon channel

S _T ^{lep} Range (GeV)	Total MC	DATA	Total MC	SM estimate	DATA		
	Control Region ($L_p > 0.3$)		Signal Region ($L_P < 0.15$)				
	$500 < H_T < 750 \text{GeV}$						
[150-250]	1383±10	1297	246±3.0	231±7±24	258		
[250-350]	427±4.9	383	93.7±2.0	84.1±4.2±7.3	78		
[350-450]	146±2.9	128	37.9±1.3	33.3±3.0±2.6	23		
> 450	55.8 ± 1.8	50	17.5±0.9	15.7±2.2±2.0	16		
$750 < { m H_T} < 1000~{ m GeV}$							
[150-250]	264.4±3.8	218	49.4±1.5	$40.8{\pm}2.9{\pm}3.5$	46		
[250-350]	86.7±1.9	88	21.0±0.9	$21.3\pm2.3\pm2.2$	22		
[350-450]	32.6±1.3	25	9.8±0.6	$7.5\pm1.5\pm1.0$	8		
> 450	25.2±1.3	18	8.3±0.6	$5.9 \pm 1.4 \pm 0.7$	7		
$1000~{ m GeV} < { m H_T}$							
[150-250]	87.1±2.3	76	19.3±0.9	$16.9 \pm 1.9 \pm 1.7$	15		
[250-350]	31.0±1.2	31	8.2 ± 0.7	$8.2{\pm}1.5 \pm 1.0$	8		
[350-450]	10.3±0.6	7	4.3 ± 0.4	$2.9 \pm 1.1 \pm 0.6$	1		
> 450	11.2±0.7	12	4.3 ± 0.4	$4.6{\pm}1.4{\pm}0.7$	2		

Systematics in lepton projection

S _T ^{lep} Range (GeV)	[150 - 250]	[250 - 350]	[350 - 450]	> 450
Control Region Stat. (%)	3	4	8	11
MC stat. (%)	1	2	3	5
JES Uncertainty (%)	6	4	6	6
MET Resolution (%)	2	1	2	0
W Polarization (%)	2	2	3	3
t t Polarization (%)	0	1	1	1
Lepton pT Scale (%)	0	1	1	2
Lepton Efficiency (%)	5	4	2	1
W cross section (%)	1	0	0	0
tt cross section (%)	3	1	0	1
t t (ℓℓ) (%)	5	5	4	2
Total Syst. Uncertainty (%)	11	9	12	14
S _T Range (GeV)	[150 - 250]	[250 - 350]	[350 - 450]	> 450
	[150 - 250] 3	[250 - 350] 4	[350 - 450] 8	> 450 10
S _T ^{lep} Range (GeV)	-	[250 - 350] 4 1	-	
S ^{lep} Range (GeV) Control Region Stat. (%)	-	[250 - 350] 4 1 5	8	10
S _T ^{lep} Range (GeV) Control Region Stat. (%) MC stat.	3 1	4 1	8 3	10 6
S _T ^{lep} Range (GeV) Control Region Stat. (%) MC stat. JES Uncertainty (%) MET Resolution (%)	3 1	4 1 5 2	8 3 9	10 6 7 4
S _T ^{lep} Range (GeV) Control Region Stat. (%) MC stat. JES Uncertainty (%)	3 1 6 1	4 1 5	8 3 9 2	10 6 7
S _T Range (GeV) Control Region Stat. (%) MC stat. JES Uncertainty (%) MET Resolution (%) W Polarization (%) tt Polarization (%)	3 1 6 1 3	4 1 5 2 2	8 3 9 2 2	10 6 7 4 2
Step Range (GeV) Control Region Stat. (%) MC stat. JES Uncertainty (%) MET Resolution (%) W Polarization (%)	3 1 6 1 3 1	4 1 5 2 2 1	8 3 9 2 2 2	10 6 7 4 2 2
Step Range (GeV) Control Region Stat. (%) MC stat. JES Uncertainty (%) MET Resolution (%) W Polarization (%) tt Polarization (%) Lepton Efficiency (%) W cross section (%)	3 1 6 1 3 1	4 1 5 2 2 1	8 3 9 2 2 2	10 6 7 4 2 2
S _T Range (GeV) Control Region Stat. (%) MC stat. JES Uncertainty (%) MET Resolution (%) W Polarization (%) tt̄ Polarization (%) Lepton Efficiency (%)	3 1 6 1 3 1	4 1 5 2 2 1	8 3 9 2 2 2	10 6 7 4 2 2

μ

е

Syst. Uncertainties in ANN method

Source	Low- ₹ _T	High- ∉ _T
	signal reg.	signal reg.
SM simulation statistics	15%	23%
Jet and \mathbb{E}_{T} energy scales	3%	4%
Lepton and E_T energy scales	3%	5%
W boson and tt cross sections	3%	2%
Other cross sections	1%	1%
Dilepton feed-down	1%	7%
Pile-up	0.5%	0.3%
W boson p_T spectrum	10%	2%
W boson polarization	1%	3%
Lepton trigger efficiency	0.3%	0.4%
Total	19%	26%