Alignment procedures for the CMS Silicon Tracker detector during pp collisions

Roberto Castello1
on behalf of CMS collaboration

1Centre for Cosmology, Particle Physics and Phenomenology,Université Catholique de Louvain, Belgium

Roberto.Castello@cern.ch

4-12th July 2012 -ICHEP 2012- Melbourne VIC, Australia
Outline

• Alignment of CMS Tracker detector
• Track based alignment: strategy in 2011 (used for Higgs searches)
• Achieved precision: from sensor deformation to the higher structures
• Control of systematic distortions
• Momentum scale using Z resonance
• Summary and prospects
Why do we need alignment?

- CMS Tracker complex system: 1440 silicon pixel modules (2D measurement), 15148 silicon strip modules (r-φ measurement)
- 24244 sensors in total
- σ_{hit}: Pixels/Strips, 9μm/20-60 μm

Expected $\sigma_{align} < 10 \mu m$: need in situ track-based alignment

$\frac{\delta p_T}{p_T} = C_1 \cdot p_T \oplus C_2$

C_1 depends on the detector geometry: $C_1 \propto \frac{\sigma_x}{\sqrt{n \cdot B \cdot L^2}}$

$\sigma_x \sim \sqrt{\sigma_{hit}^2 + \sigma_{align}^2}$
Track based alignment

Principle

• Several parallel planes providing 1D/2D measurement: displaced module in one layer cannot be treated independently, depends on shifts in other planes

• Tracks correlate alignment parameters: *global fit* approach

Alignment algorithm

• Minimizing the squares of normalised residuals, summing over many tracks:

\[
\chi^2(p, q) = \sum_{j}^{\text{tracks}} \sum_{i}^{\text{measurements}} \left(\frac{m_{ij} - f_{ij}(p, q)}{\sigma_{ij}} \right)^2
\]

• \(f_{ij} \) track model prediction at the position of the measurement, depending on the alignment \(p \) and track \(q_j \) parameters, \(m_{ij} \) the measurements (hit, Multiple Scattering expectation, ...) with uncert. \(\sigma_{ij} \)

• \(\chi^2 \) minimization leads to linear equation system \(A \cdot x = b \): solved with **MillePede II** [1] (MP), using \(f_{ij} \) linearization.

• Improved track model (**General Broken Lines**) [2] [3] allowed for a rigorous treatment of MS effects: increasing \(n_{\text{par}} \) for a charged particle in a \(B \) field to \(n_{\text{par}} = 5 + 2n_{\text{scat}} \), adding two deflection angles for each thin scatterers.
Strategy for 2011 Tracker alignment

Input dataset ($\sim 1/fb$):
- 15M loosely selected isolated muon tracks, 3M low momentum tracks, 3.6M cosmic ray tracks and 375k muon track pairs from Z decays

Strategy (MP):
- MINRES: fast solution of lin. eq. system by (iteratively) minimizing $|A \cdot x - b|$
- $O(200k)$ free alignment parameters: 5(6) rigid body-like + 3 bow parameters per sensor
- Time dependent rigid body alignment for larger pixel structures (modules within constant): 9 periods
- Z mass measurement as a constraint

Computing performances of final fit:
- Total CPU 44.5 h, wall 9:50 h
- efficient and fast turnaround
Sensor deformations

- **Bows**: if flat sensors are assumed, track angle dependence on the hit residuals
- **Kinks**: in TOB/TEC, typically 1.6 mrad

\[\Delta w = \frac{\Delta u}{\tan \psi} \]

Visualization of bows and kinks

- Determination of just **kinks** (for TOB and TEC) or just **bows** (TIB, TOB, TEC, BPIX) does not fully correct the dependence: only after consideration of both the dependence is much flatter. \(u_r = 2u/L_u, L_u = \text{module length} \)
Pixels: local precision

- Estimated from the RMS of the Distributions of the Medians of the Residuals (DMR) for each module (# hits > 30): more robust against MS
- Refitting data/MC design/MC misalignment geometry with 1.1 M isolated muons from Z, $p_T > 40$ GeV for a relative comparison of achieved precision

Data close to design performances, misalignment scenario well reproducing it
- Collision tracks and module surface deformation allowed to significantly improve local precision in the Pixels w.r.t cosmic rays alignment [4]
Pixels: monitoring of large structures

- Correcting vs time relative pixel half barrels displacements
- Monitoring separation along z using unbiased vertex-track residuals: 9 time intervals found

Time dependence of pixel structure alignment accounts for separation as function of time: b-tagging insensitive to remaining 10 μm effect
Monitoring of large structures by Laser beams

- 434 strip modules (3%) are illuminated by infrared laser beams [5]
- The stability of the Strip Tracker sub-detectors calculated w.r.t. TOB as reference: 2000 triggers every 5 minutes (sync. with bunch crossings)

- **Relative** stability observed within a run (during stable running conditions)
- Good **absolute** stability during the 2011 pp collisions (w.r.t. reference run)
- Achieved resolution: **absolute** 2-4 \(\mu m / 3-9 \mu rad \), **relative** 1-3 \(\mu m / 1-3 \mu rad \)
The remaining challenge: control of global distortions

The weak mode problem:

- Alignment algorithms look for the geometry minimizing global χ^2
- Given a track topology, there are global movements leaving global χ^2 unchanged, but track parameters do change
- Bias on the track parameters (p_T), affecting physics measurement

$$\Delta \phi = \tau \ast z$$

Example of twist mode

How to constrain?

- Different input track topology: cosmics taken with and w/o B field
- Standard candles: $Z \rightarrow \mu\mu$ mass constraint
- External informations: survey, cross alignment with other detectors
Weak mode sensitivity: Twist deformation

- **Procedure**: geometry (A) misaligned according to 9 cylindrical modes [6] (B), then re-alignment with same strategy and inputs (C)

- **Validation**: module-by-module difference after subtraction of global movements and rotations ($\Delta = C - A$) and χ^2 from loosely selected isolated muons ($p_T > 5\text{GeV}$)

Usage of $Z \to \mu\mu$ constraint cures Twist: great achievement compared to previous alignment geometry (χ^2 unchanged with collision tracks)
Weak mode sensitivity: Sagitta-like deformation

- After re-alignment large scattering in TID and TEC, reduced in Barrel region
- However, alignment is not able to fully recover the introduced sagitta misalignment: remaining global distortion is a weak mode for the geometry
- Accounted for in physics analysis dominated by momentum scale systematics (like $\sin^2 \theta_W$, Λ_B lifetime), by evaluating the effect of applying the remaining Δ on the geometry used for the results.
Momentum scale

- p_T resolution dominated by Tracker up to 200 GeV
- Twist results in curvature changes, biasing measured p_T of pos. or neg. tracks oppositely \rightarrow effect on M_Z (red): $\partial(M_Z^2)/\partial\tau \sim (p^z_{\mu^-} - p^z_{\mu^+})$
- Adding Z mass as virtual measurement ($5\times2 \rightarrow 9$ parameters), RMS as uncertainty: keeps twist under control (blue)

- Sinusoidal modulation of M_Z vs ϕ still visible in the geometry (~ 200 MeV):
 - mostly harmless, since physics integrated over ϕ
 - hints for a strong reduction when reweighing more the $Z \rightarrow \mu\mu$ event topology in alignment procedure
Summary

• Large CMS silicon Tracker: a challenge for alignment
• Track based alignment in 2011 performed with $\sim 200k$ parameters:
 • determining sensor bows and kinks
 • following time dependent movements of large pixel structures
 • controlling weak modes changing momentum using the Z mass
• Achieved local precisions in the Pixels and Strips match CMS requirements
• Remaining systematic distortions not constrained by alignment procedure
 are accounted in the analysis as systematics
• Studies ongoing to understand origins: hints for possible reduction

Tracker alignment keeps serving CMS physics with high precision

...contributing to the 'recent' physics discoveries.

R. Castello (UC Louvain) CMS Tracker Alignment Procedures 06/07/2012 13 / 14
References

Kleinwort C., *General Broken Lines as advanced track fitting method*, 2012 *Nucl. Instr. and Meth. in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 673 pg. 107 - 110

CMS Collaboration, *Alignment of the CMS Silicon Tracker during Commissioning with Cosmic Rays*, 2010 *JINST* 5 T03009

