

Alignment procedures for the CMS Silicon Tracker detector during pp collisions

Roberto Castello ${ }^{1}$ on behalf of CMS collaboration
${ }^{1}$ Centre for Cosmology, Particle Physics and Phenomenology,
Université Catholique de Louvain, Belgium
Roberto.Castello@cern.ch

4-12 ${ }^{\text {th }}$ July 2012 -ICHEP 2012- Melbourne VIC, Australia

Outline

- Alignment of CMS Tracker detector
- Track based alignment: strategy in 2011 (used for Higgs searches)
- Achieved precision: from sensor deformation to the higher structures
- Control of systematic distortions
- Momentum scale using Z resonance
- Summary and prospects

Why do we need alignment?

- CMS Tracker complex system:

1440 silicon pixel modules (2D measurement), 15148 silicon strip modules ($r-\phi$ measurement)

- 24244 sensors in total
- $\sigma_{\text {hit }}$: Pixels/Strips, $9 \mu \mathrm{~m} / 20-60 \mu \mathrm{~m}$

- $\frac{\delta p_{T}}{p_{T}}=C_{1} \cdot p_{T} \oplus C_{2}$
- C_{1} depends on the detector geometry: $C_{1} \propto \frac{\sigma_{X}}{\sqrt{n} \cdot B \cdot L^{2}}$
- $\sigma_{x} \sim \sqrt{\sigma_{\text {hit }}^{2}+\sigma_{\text {align }}^{2}}$

Expected $\sigma_{\text {align }}<10 \mu \mathrm{~m}$: need in situ track-based alignment

Track based alignment

Principle

- Several parallel planes providing 1D/2D measurement: displaced module in one layer cannot be treated independently, depends on shifts in other planes
- Tracks correlate alignment parameters: global fit approach

Alignment algorithm

- Minimizing the squares of normalised residuals, summing over many tracks:

$$
\chi^{2}(\mathbf{p}, \mathbf{q})=\sum_{j}^{\text {tracks }} \sum_{i}^{\text {measurements }}\left(\frac{m_{i j}-f_{i j}\left(\mathbf{p}, \mathbf{q}_{j}\right)}{\sigma_{i j}}\right)^{2}
$$

- $f_{i j}$ track model prediction at the position of the measurement, depending on the alignment (\mathbf{p}) and track $\left(\mathbf{q}_{j}\right)$ parameters, $m_{i j}$ the measurements (hit, Multiple Scattering expectation, ...) with uncert. $\sigma_{i j}$
- χ^{2} minimization leads to linear equation system $A \cdot x=b$: solved with MillePede II [1] (MP), using $f_{i j}$ linearization.
- Improved track model (General Broken Lines) [2] [3] allowed for a rigorous treatment of MS effects: increasing $n_{p a r}$ for a charged particle in a B field to $n_{p a r}=5+2 n_{s c a t}$, adding two deflection angles for each thin scatterers.

Strategy for 2011 Tracker alignment

Input dataset ($\sim 1 / f b$):

- 15M loosely selected isolated muon tracks, 3M low momentum tracks, 3.6M cosmic ray tracks and 375 k muon track pairs from Z decays
Strategy (MP):
- MINRES: fast solution of lin. eq. system by (iteratively) minimizing $|A \cdot x-b|$
- $O(200 k)$ free alignment parameters: $5(6)$ rigid body-like +3 bow parameters per sensor
- Time dependent rigid body alignment for larger pixel structures (modules within constant): 9 periods
- Z mass measurement as a constraint

Computing performances of final fit:

- Total CPU 44.5 h , wall 9:50 h

- efficient and fast turnaround

Sensor deformations

- Bows: if flat sensors are assumed, track angle dependence on the hit residuals
- Kinks: in TOB/TEC, tipically 1.6 mrad

Visualization of bows and kinks

CMS Preliminary 2011

- Determination of just kinks (for TOB and TEC) or just bows (TIB, TOB, TEC, BPIX) does not fully correct the dependence: only after consideration of both the dependence is much flatter. $\left(u_{r}=2 u / L_{u}, L=\right.$ module length $)$

Pixels: local precision

- Estimated from the RMS of the Distributions of the Medians of the Residuals (DMR) for each module (\# hits >30): more robust against MS
- Refitting data/MC design/MC misalignment geometry with 1.1 M isolated muons from $\mathrm{Z}, p_{T}>40 \mathrm{GeV}$ for a relative comparison of achieved precision

- Data close to design performances, misalignment scenario well reproducing it
- Collision tracks and module surface deformation allowed to significantly improve local precision in the Pixels w.r.t cosmic rays alignment [4]

Pixels: monitoring of large structures

- Correcting vs time relative pixel half barrels displacements
- Monitoring separation along z using unbiased vertex-track residuals: 9 time intervals found

- Time dependence of pixel structure alignment accounts for separation as function of time: b-tagging insensitive to remaining $10 \mu \mathrm{~m}$ effect

Monitoring of large structures by Laser beams

- 434 strip modules (3%) are illuminated by infrared laser beams [5]
- The stability of the Strip Tracker sub-detectors calculated w.r.t. TOB as reference: 2000 triggers every 5 minutes (sync. with bunch crossings)

- Relative stability observed within a run (during stable running conditions)
- Good absolute stability during the 2011 pp collisions (w.r.t. reference run)
- Achived resolution: absolute 2-4 $\mu \mathrm{m} / 3-9 \mu \mathrm{rad}$, relative $1-3 \mu \mathrm{~m} / 1-3 \mu \mathrm{rad}$

The remaining challenge: control of global distortions

 The weak mode problem:- Alignment algorithms look for the geometry minimizing global χ^{2}
- Given a track topology, there are global movements leaving global χ^{2} unchanged, but track parameters do change
- Bias on the track parameters $\left(p_{T}\right)$, affecting physics measurement

Example of twist mode

How to constrain?

Example of telescope mode

- Different input track topology: cosmics taken with and w/o B field
- Standard candles: $Z \rightarrow \mu \mu$ mass constraint
- External informations: survey, cross alignment with other detectors

Weak mode sensitivity: Twist deformation

- Procedure: geometry (A) misaligned according to 9 cylindrical modes [6] (B), then re-alignment with same strategy and inputs (C)
- Validation: module-by-module difference after subtraction of global movements and rotations ($\Delta=\mathrm{C}-\mathrm{A}$) and χ^{2} from loosely selected isolated muons ($p_{T}>5 \mathrm{GeV}$)

- Usage of $Z \rightarrow \mu \mu$ constraint cures Twist: great achievement compared to previous alignment geometry (χ^{2} unchanged with collision tracks)

Weak mode sensitivity: Sagitta-like deformation

- After re-alignment large scattering in TID and TEC, reduced in Barrel region
- However, alignment is not able to fully recover the introduced sagitta misalignment: remaining global distortion is a weak mode for the geometry
- Accounted for in physics analysis dominated by momentum scale systematics (like $\sin ^{2} \theta_{W}, \Lambda_{B}$ lifetime), by evaluating the effect of applying the remaining Δ on the geometry used for the results.

Momentum scale

- p_{T} resolution dominated by Tracker up to 200 GeV
- Twist results in curvature changes, biasing measured p_{T} of pos. or neg. tracks oppositely \rightarrow effect on $M_{Z}(\mathrm{red}): \partial\left(M_{Z}^{2}\right) / \partial \tau \sim\left(p_{\mu-}^{z}-p_{\mu+}^{z}\right)$
- Adding Z mass as virtual measurement $(5 \times 2 \rightarrow 9$ parameters), RMS as uncertainty: keeps twist under control (blue)

- Sinusoidal modulation of M_{z} vs ϕ still visible in the geometry ($\sim 200 \mathrm{MeV}$):
- mostly harmless, since physics integrated over ϕ
- hints for a strong reduction when reweighing more the $Z \rightarrow \mu \mu$ event topology in alignment procedure

Summary

- Large CMS silicon Tracker: a challenge for alignment
- Track based alignment in 2011 performed with ~ 200k parameters:
- determining sensor bows and kinks
- following time dependent movements of large pixel structures
- controlling weak modes changing momentum using the Z mass
- Achieved local precisions in the Pixels and Strips match CMS requirements
- Remaining systematic distortions not constrained by alignment procedure are accounted in the analysis as systematics
- Studies ongoing to understand origins: hints for possible reduction

Tracker alignment keeps serving CMS physics with high precision
...contributing to the 'recent' physics discoveries.

References

Blobel V., Software Alignment for Tracking Detectors, 2006 NIM A566 5-13 (see also https://www.wiki.terascale.de/index.php/Millepede_II)

Blobel V., Kleinwort C. and Meier F., Fast Alignment of a Complex Tracking Detector using Advanced Track Models, 2011 Comput.Phys. Commun. 182 1760-3 CERN-CMS-CR-2010-089

Kleinwort C., General Broken Lines as advanced track fitting method, 2012 Nucl. Instr. and Meth. in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 673 pg. 107-110

CMS Collaboration, Alignment of the CMS Silicon Tracker during Commissioning with Cosmic Rays, 2010 JINST 5 T03009

CMS collaboration, CMS Silicon Strip alignment and monitoring with the Laser Alignment System, 2012 Nuclear Inst. and Methods in Physics Research, A NIMA 54346
D. N. Brown, A. V. Gritsan, Z. J. Guo, D. Roberts, Local Alignment of the BABAR Silicon Vertex Tracking Detector, 2009 Nucl.Instrum.Meth.A, 603:467-484

CMS Collaboration, Tracker Alignment 2011 performance, 2012 CERN-CMS-DP-2012-004

