Measurements of the tt forwardbackward asymmetry at CDF

Chris Hays, Oxford University for the CDF Collaboration

$t\bar{t}$ asymmetry in $\sqrt{s}=1.96$ TeV $p\bar{p}$ collisions

Top-quark pairs predominantly produced by valence-quark annihilation

Forward-backward asymmetry $A_{\text{FB}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$ in terms of color flow:

Top quark produced in direction of proton

(positive asymmetry)

High mass & Δy

Top quark opposite to direction of proton

(negative asymmetry)

Low mass & Δy

+

C. Hays, Oxford University

SM predictions of tt asymmetry

Study at parton-level with NLO generators MC@NLO, MCFM, & PowHeg

	MC@NLO	POWHEG	MCFM
Inclusive	0.067	0.066	0.073
$ \Delta y < 1$	0.047	0.043	0.049
$ \Delta y > 1$	0.130	0.139	0.150
$M_{t\bar{t}} < 450 \text{ GeV/c}^2$	0.054	0.047	0.050
$M_{t\bar{t}} > 450 \text{ GeV/c}^2$	0.089	0.100	0.110

Predictions include +26% correction due to electroweak diagrams

CDF measurements of tt asymmetry

Measure in semileptonic (lvbqqb) and leptonic (lvblvb) final states

Charged lepton(s) used to tag top and/or antitop quark(s)

Kinematic fitter determines y_t and $y_{\overline{t}}$

Semileptonic sample, 8.7 fb⁻¹

	$\geq 4 \text{ jets}$	
W+HF	241 ± 78	
Non-W	98 ± 51	
W+LF	96 ± 29	
Single Top	33 ± 2	
Diboson	19 ± 3	
Z+Jets	18 ± 2	
Total Background	505 ± 123	
$tar{t}$ 7.4pb	2037 ± 277	
Total Prediction	2542 ± 303	
Data	2498	

Includes extended muon coverage

Leptonic sample, 5.1 fb⁻¹

Process	Events
WW	11.7 ± 2.4
WZ	3.5 ± 0.6
ZZ	2.3 ± 1.8
$\mathrm{W}\gamma$	0.4 ± 0.4
$\mathrm{DY}\!\!\to au au$	12.3 ± 2.2
$DY \rightarrow ee + \mu\mu$	22.4 ± 3.2
Fakes	34.3 ± 14.7
t ar t	237.1 ± 11.3
Total	324.0 ± 28.3
Data	334

Measurement in semileptonic channel

Use PowHeg to model kinematics and acceptance of semileptonic data

Measure parton-level asymmetry inclusively and as a function of M $_{_{tt}}$ & Δy

Also measure asymmetry as a function of $p_{_{\!\scriptscriptstyle T}}(tt)$ at detector level

Measurement in semileptonic channel

>2 σ deviation from SM predominantly at high M_{tt} and low p_T(tt)

Region of soft emissions and virtual corrections

6 July, 2012

Uncertainties in semileptonic channel

Statistical uncertainty dominates

Largest systematic uncertainties due to background modelling

CDF Run II Preliminary $L = 8.7 \text{ fb}^{-1}$

Source	Systematic Uncertainty
Background Shape	0.014
Background Normalization	0.011
Parton Showering	0.010
Jet Energy Scale	0.005
Initial and Final State Radiation	0.005
Color Reconnection	0.001
Parton Distribution Functions	0.001
Correction Procedure	0.003
Total Systematic Uncertainty	0.022
Statistical Uncertainty	0.041
Total Uncertainty	0.047
Initial and Final State Radiation Color Reconnection Parton Distribution Functions Correction Procedure Total Systematic Uncertainty Statistical Uncertainty	0.001 0.001 0.003 0.022 0.041

Asymmetry well modelled in background-dominated pre-tag sample

Cross-checks in semileptonic channel

Asymmetry stable over time

Asymmetry consistent between electrons & muons, positive & negative leptons, 1 & 2 b-tags

Asymmetry also observed in lepton rapidity distribution

Measurement in leptonic channel

Solve for unobserved neutrino kinematics by minimizing likelihood:

$$\begin{split} &\mathcal{L}\left(\vec{p}_{\nu}, \vec{p}_{\bar{\nu}}, E_{b}, E_{\bar{b}}\right) = P\left(p_{z}^{t\bar{t}}\right) P\left(p_{T}^{t\bar{t}}\right) P\left(M_{t\bar{t}}\right) \times \\ &\frac{1}{\sigma_{\text{jet1}}} \exp\left[-\frac{1}{2} \left\{\frac{E_{\text{jet1}}^{\text{meas}} - E_{\text{jet1}}^{\text{guess}}}{\sigma_{\text{jet1}}}\right\}^{2}\right] \times \frac{1}{\sigma_{\text{jet2}}} \exp\left[-\frac{1}{2} \left\{\frac{E_{\text{jet2}}^{\text{meas}} - E_{\text{jet2}}^{\text{guess}}}{\sigma_{\text{jet2}}}\right\}^{2}\right] \\ &\frac{1}{\sigma_{x}^{\text{MET}}} \exp\left[-\frac{1}{2} \left\{\frac{E_{x}^{\text{meas}} - E_{x}^{\text{guess}}}{\sigma_{x}^{\text{MET}}}\right\}^{2}\right] \times \frac{1}{\sigma_{y}^{\text{MET}}} \exp\left[-\frac{1}{2} \left\{\frac{E_{y}^{\text{meas}} - E_{y}^{\text{guess}}}{\sigma_{y}^{\text{MET}}}\right\}^{2}\right] \end{split}$$

Measurement in leptonic channel

Study mass dependence

$$A_{\rm obs}^{<450 \text{ GeV}} = 0.104 \pm 0.066 \text{(stat.)}$$

(Pred.:
$$0.003 \pm 0.031$$
)

$$A_{\text{obs}}^{>450 \text{ GeV}} = 0.212 \pm 0.096 \text{(stat.)}$$

(Pred. : -0.040 ± 0.055)

Larger asymmetry at higher mass, but statistically limited

Conclusions

CDF has updated semileptonic tt asymmetry measurement to the complete data set

Significant asymmetry measured predominantly at high mass and low $p_{_{\rm T}}$ of the top-quark pair

Leptonic channel shows similar trend

Taken together, results suggest NLO QCD insufficient to describe asymmetry at high mass & low-p_{_} in pp collisions

