

ipul

The CMS High Level Trigger

Stéphanie Beauceron IPNL/Université Lyon I/CNRS/IN2P3 on behalf of CMS collaboration

Outline

- HLT Description
- 2011 vs 2012: Challenges:
 - Pile Up
 - Particle Flow
 - Ecal Light Corrections
- Performance on Physics and HLT summary
- Data Parking/Data Scouting
- Conclusion

New Challenges

Muon cross section at HLT with $p_T > 40 \text{ GeV}$ \rightarrow Lower and flat in 2012 thanks to better track quality cuts

2011: *Q* up to 3.5 Hz/nb 2012: *Q* up to 6.5 Hz/nb → Code improved to reduce pile up dependence

Up.

Single Muon Efficiency

→ Keep good performances wrt 2011

Purity is preserved with respect to pile up.

Above 80% purity in for muons.

→ Quite pure selection of objects at HLT

Particle Flow at HLT

ip

Improve efficiency of algorithms via particle flow on the HLT farm as for offline

CPU & Cross Section

CMS Preliminary 2012 Run 195163 time/event [sec.] 0.17 HLT limit with 100kHz L1 input proc.) 0.16 0.15 PU=28 PU=36 ime/event 0.14 0.13 0.12 0.11 01 4500 5000 5500 6000 6500 7000 7500 8000 8500 90C180 Luminosity [10³⁰ cm⁻² s⁻¹] 160

Cross Section almost constant among a run (=with pile up) - No degradation of signal/background wrt to pile up - A few paths with non linear increase with luminosity (working on them) HLT CPU time/evt grows linearly with Pile Up > 5 Hz/nb use extension of HLT farm Current HLT farm [13k core] cope up to 8 Hz/nb

Single Electron Efficiency

Increase of luminosity \rightarrow increase of transparency losses in Electromagnetic calorimeter of CMS.

Correction to compensate derived every week in 2012. Application to Endcap only so far.

ipn

➔ Improvement: steeper turn on curve and keep lower threshold than 2011 thanks to corrections.

Photon Efficiency: H→γγ

Efficiency of HLT reconstruction for photons above 26 GeV as a function of offline $p_T \& \eta$. Fully efficient at 30 GeV thanks to correction applied in endcap electromagnetic calorimeter. \rightarrow Crucial triggers for Higgs searches.

Run 2012A < run 2012B: change quality criteria of isolation tracks Difference between barrel ($|\eta| < 1.5$) and endcap ($|\eta| > 1.5$): due to detector effects and different real tau purity

→ Very high performance which allow Higgs investigations

HLT Menu @ 6Hz/nb

ipnl

(Unprescaled) Object	Trigger Threshold (GeV)	Rate (Hz)	Physics
Single Muon	40	21	Searches
Single Isolated muon	24	43	Standard Model
Double muon	(17, 8) [13, 8 for parked data]	20 [30]	Standard Model / Higgs
Single Electron	80	8	Searches
Single Isolated Electron	27	59	Standard Model
Double Electron	(17, 8)	8	Standard Model / Higgs
Single Photon	150	5	Searches
Double Photon	(36, 22)	7	Higgs
Muon + Ele x-trigger	(17, 8), (5, 5, 8), (8, 8, 8)	3	Standard Model / Higgs
Single PFJet	320	9	Standard Model
QuadJet	80 [50 for parked data]	8[100]	Standard Model /Searches
Six Jet	(6 x 45), (4 x 60, 2 x 20)	3	Searches
MET	120	4	Searches
НТ	750	6	Searches

Data Parking

LHC will stop in 2013/2014: Recording additional events to be studied at that time:

Vector Boson Fusion: $M_{jj}>650 \text{ GeV}$, $\Delta \eta_{jj}>3.5$ MultiJet: 4 Jet with $p_T>50 \text{ GeV}$ HT and MHT: For susy searches MuOnia: low $M_{\mu\mu}$ (Jpsi, Psi`, ..) DoubleMu: Mu13_Mu8 TauParked: TT (with 3prong decays) 5% of parked data are promptly reconstructed for monitoring purpose

→ On average 350 Hz of "core physics" is promptly reconstructed and 300 Hz of data is parked for future reconstruction

iP

Data Scouting

- Look at events not collected in main stream due to trigger constraints. Scouting approach: Trigger: H_T >250 GeV unprescaled High rate (~1 kHz) + reduced event content (i.e. store HLT jets, no RAW data)
- → Bandwidth (= rate x size) under control [a few MB/s]
- → Possibility to change stream A triggers in case something interesting is seen by "scouting"
- Analyses in Data Quality Monitoringlike framework for: Exotica: Dijet search SUSY: Razor, a_T

Conclusions

- HLT is serving many purpose:
 - Various streams for detector maintenance
 - Large flexibility to record specific events for physics searches
- HLT remarkably stable wrt PU
 - Many improvements in code/tuning of corrections
 - Allows us to use refined algorithms online
 - Current HLT Farm able to cope with 165 ms/evt @ 100 kHz L1
 → ~ 8 Hz/nb as instantaneous luminosity with no changes from current prescale setting at HLT
 - Efficiencies high, turn-on's sharp, rates stable

→ Ready to record more data to hunt for/to study new particles

Back Up

16

High Level Trigger

- The HLT: dedicated configuration of the CMS reconstruction software. We currently have ~13 000 cpu cores, and run ~20 000 event processors (exploiting the hyperthreading capability of the CPUs from 2011 and 2012). The current machines are:
- 720 dual E5430 Xeon quad-core processors
- 288 dual X5650 Xeon six-core processors (with HyperThreading)
- 256 dual E5-2670 Xeon eight-core processors (with HyperThreading)

With a nominal input rate of 100 kHz, each process has available an average of ~160 ms to read the input data run all the trigger algorithms (~400 currently) take the final accept/reject decision stream the data to the Storage Managers

Nominal output rate ~1 kHz For comparison, offline reconstruction takes ~3 sec per event

	Compart Mont Solution	HLT farm evolution				
	2009: 720x	May add 72x		Aay 2012 dd: 4x		
		Original HLT System Dell Power Edge 1950	2011 extension Dell Power Edge c6100	2012 extension Dell Power Edge c6220		
A CONTRACT	Form factor	1 motherboard in 1U box	4 motherboards in 2U box	4 motherboards in 2U box		
	CPUs per mother- board	2x 4-core Intel Xeon E54 30 Harpertown , 2.66 GHz, 16GB RAM	2x 6-core Intel Xeon X5650 Westmere , 2.66 GHz, hyper-threading, 24 GB RAM	2x 8-core Intel Xeon E5- 2670 Sandy Bridge , 2.6 GHz, hyper threading, 32 GB RAM		
1 21	#boxes	720	72 (=288 motherboards)	64 (=256 motherboards)		
B VOL	#cores	5760	3456 (+ hyper-threading)	4096 (+ hyper-threading)		
A A A A A A A A A A A A A A A A A A A	cumulative #cores	5.6k	9.1k	13.2k		
	cumulative #CMSSW	5k instances	11k instances gets are on 1 core of an Intel Harperto	20k instances wn)		
Per-event	2009:	2011:	2012:			
CPU budget @ 100 kHz:		~50 ms / evt	~100 ms / evt	~165 ms / evt 18		

Very high efficiencies even for low threshold object

 \rightarrow Crucial for exploring H \rightarrow WW and H \rightarrow ZZ production mode

HLT Rates

HLT rate for first 10h of long recent fill •Average "core rate = 380 Hz in range shown (6.6 - 3 Hz/nb) = 340Hz from 6.5 - 2.5Hz/nb, when fill is usually dumped by operator

ip

•Rate limit is set by offline resources, to 300-350Hz "core" physics on average.

•Goal: keep the average over the fill

–If larger rates at the end \rightarrow lower rates at start, with reduced physics acceptance

-Physics like to have a constant set of thresholds throughout the data

HLT Operations

Rate Monitoring:

- Tools able to spot problems immediately during data taking.
- Offline analysis identifies triggers with unexpected rate growth
 - > instantaneous lumi

Data Certification:

- New, stream-lined certification process provides quicker feedback to operations.
- Improved HLT DQM utilities utilized by HLT secondary on-call

