

Common Solutions for LHC Computing Problems

Ian Fisk, Maria Girone, and Alexei Klimentov

On behalf of the CMS, CERN IT-ES/VOS and ATLAS

Introduction

- Two of the LHC experiments are general purpose, and two are more specialized
 - From a computing perspective a lot of the workflows are similar and can be done with common services
- While the experiment collaborations are huge and highly distributed, effort available in development is limited and decreasing
 - Effort is focused on analysis and physics
 - Common solutions are a more efficient use of effort

Anatomy of the Common Solution

Experiment
Specific
Elements

Higher Level Services that translate between

Common Infrastructure Components and Interfaces

FNAL/CD

Most common solutions can be diagrammed as the interface layer between common infrastructure elements and the truly experiment specific components

- One of the successes of the grid deployment has been the use of common grid interfaces and local site service interfaces
- The experiments have a environments and techniques that are unique
- In common solutions we target the box in between. A lot of effort is spent in these layers and there are big savings of effort in commonality
 - not necessarily implementation, but approach & architecture

The Group

- Experiments have a history of using common components through the grid interfaces
- In this project we rely on expertise from the experiments and IT-ES/VOS
 - The group is currently supported with substantial EGI-InSPIRE project effort
 - Careful balance of effort embedded in the experiments & on common solutions
 - Development of institutional expertise in experiment systems across experiment boundaries
 - People uniquely qualified to identify and implement common solutions
 - Matches well with the EGI-InSPIRE mandate of developing sustainable solutions

Examples

- Data Management support
 - Covers development and integration of the experiment specific and shared grid middleware
- Monitoring and Experiment Dashboards
 - Allows experiments and sites to monitor and track their production and analysis activities across the grid
- The LCG Persistency Framework
 - handles the event and detector conditions data from the experiments
- Distributed Production and Analysis
 - design and development for experiment workload management and analysis components

Example: Data Popularity

Experiment
Booking
Systems
Mapping Files to
Datasets

 The experiments have system that identify how a low level object like a file is mapped to a higher level logical object like a dataset

Files accessed, users and CPU used

All experiments open files

- Experiments want to know how the logical concepts like datasets are used, how much, and by whom
 - Good chance of a common solution

FNAL/CD

 Used by the experiments to assess the importance of computing processing work, and to decide when the number of replicas of a sample needs to be adjusted either up or down and replicate or clean-up

Time evolution of W+jet datasets

environment configuration, and job splitting

Job Tracking, Resubmission, and scheduling

and Pilots

Job submission

FNAL/CD

- Up to now services have generally focused on monitoring activities
 - All of these are important and commonality saves effort
 - Not normally in the core workflows of the experiment
- Success with the self contained services has provided confidence moving into a core functionality
 - Looking at the Analysis Workflow

Analysis Workflow Progress

Data discovery, environment configuration, and job splitting

Job Tracking, Resubmission, and scheduling

Job submission and Pilots

FNAL/CD

- Looking at ways to make the workflow engine common between the two experiments
 - Improving the sustainability of the central components that interface to low-level services
 - A thick layer that deals with tracking jobs after they are created (resource assignment, job tracking, resubmission)
 - Maintaining experiment specific interfaces
 - Job splitting, environment, and data discovery would continue to be experiment specific

Goal

- Take elements of both experiment systems, and combined with clean interfaces to experiment specific elements to develop a common solution
 - Workflow tracking from Panda
 - Pilot submission from Glide-in WMS
 - Job splitting and data discovery from the experiment elements
- Investigate scalability and functionality

Proof of Concept Diagram

Plan

- Completed the Feasibility Study in May
 - The component functionality and interactions were examined and no show stoppers were identified to exploring common prototypes
 - Pursuing a 6 Step approach for a Proof-ofconcept Prototype
 - STEP 0: Run Basic CMSSW job
 - STEP 1: Include pilot factory
 - STEP 2: CMS client tool
 - STEP 3: Output file handling
 - STEP 4: CMS output management
 - STEP 5: Log and output access
 - Goal is to have a functional prototype by the fall to decide to be able to make informed decisions about moving on a common product

Progress

- We have reached the level that CMS has been able to submit basic jobs to the PANDA server
 - A lot of the code for job specification and splitting from the current system can be re-used
 - Involves some reorganization of code to make it more experiment generic
- We want to connect the production PANDA server from ATLAS with the production Glidein WMS system from CMS to demonstrate the scale possible
 - Involves some development to reasonably handle resource allocation across two experiments

Outlook

- IT-ES/VOS has a good record of identifying and development common solutions between the LHC experiments
 - Setup and expertise of the group have helped
- Experiments are engaged and interested in the process and the development
- Several services focused primarily on monitoring have been developed and are in production use
- More ambitious services that would be closer to the experiment core workflows are under investigation