

Combination of D0 Searches for the SM Higgs Boson

Ken Herner University of Michigan on behalf of the D0 collaboration 7 July 2012

Recap of D0 Higgs Analyses

- Analyses divided into "Lowmass" and "High-mass"
- Low-mass: associated production $VH \rightarrow Vb\overline{b}$
 - See S. Desai's talk
- High-mass: H→WW decays
 See A. Patwa's talk
- Also contributions in secondary (tau, γγ) channels
 - See P. Grannis' talk
- All in all, 12 analyses with over 50 orthogonal subchannels

New for Summer 2012

- Updates to most analyses (a few also added data)
- New channel: $VH \rightarrow VWW \rightarrow Ivjjjj$
- Update to $VH \rightarrow VWW \rightarrow |v|v|v$
- Changes to γγ
 - split into γ -dominated/jet dominated

D0 Combination

Combining Analyses

Ordering rule: combine bins by S/B

Systematics (blue) shown are after being constrained by data (note pseudoexperiments are thrown before this step)

Summer 2012 D0 Combination

• D0: Modified frequentist (CL_s) technique, negative LLR as test statistic (LLR = -2 log (L_{S+B}/L_B))

Summer 2012 D0 Combination

Summer 2012 D0 Combination

Quantifying Excesses

- Maximum at 135 GeV, followed by 120 GeV
- Right: best fit signal cross section to data

Examining Sub-Combinations

Consider channels with H→WW/bb decay only

Contributions from both sub-combinations

Signal Injection

- Replace data with sum of backgrounds and signal
 - What would these "data" look like in LLR?
 - Also inject at best-fit cross section rate

Combination Evolution

Winter 2012

What has changed? Improved MVA techniques Some channels added data A few new channels Improved background modeling/rejection Please see other talks

D0 Combination

Summer 2012

Combination Evolution

Have consistently seen low-mass excess since 2007

Summary

- D0 has updated the Higgs combination with some additional channels and numerous improvements to existing channels
- 8% improvement in expected limits wrt Winter 2012
- Exclude 159-170 GeV at 95% CL
- Interesting excess consistent with 115 – 140 GeV SM Higgs
 - Best fit cross section 1.5 x SM
- Moving quickly to finalize results
- Further reading: <u>arXiv:1207.0422</u>

Inside the Limit Black Box

- N.B. I will focus on the D0 method here
- Key value is log-likelihood ratio (LLR) $LLR(\vec{s}, \vec{b}, \vec{d}) = -2Log(Q)$ $Q(\vec{s}, \vec{b}, \vec{d}) = \prod_{i=0}^{N_c} \prod_{j=0}^{N_{bins}} \frac{(s+b)_{ij}^{d_{ij}}e^{-(s+b)_{ij}}}{d_{ij}!} / \frac{b_{ij}^{d_{ij}}e^{-b_{ij}}}{d_{ij}!}$
- S+B and B-only LLR populated by pseudoexperiments
- Define CLs:

Finding the Limit

- Systematic variations allowed to float to maximize likelihood for each hypothesis separately for each pseudoexperiment
 - Redefine LLR as difference in fit to data of the two hypotheses ("Profiling")
 - Reduces overall impact of systematics
- Finding the limit
 - Scale up signal cross section: LLR_{sb} and LLR_{b} will separate
 - Repeat entire procedure
 - Scale until $CL_{sb}/CL_{b} = 0.05$

Changes from the previous result

Sub-combination Limits

M _H (GeV)	100	105	110	115	120	125	130	135	140	145	150
bb Exp	1.16	1.26	1.40	1.58	1.85	2.25	2.87	3.82	5.31	7.72	11.53
bb Obs	0.90	1.14	1.26	1.96	2.67	3.30	3.89	6.01	8.23	12.81	16.52
WW Exp.				5.81	4.37	3.20	2.57	2.09	1.81	1.54	1.31
WW Obs.				10.59	5.87	4.59	3,18	3.42	2.76	1.89	1.63

Look Elsewhere Effect

- Estimate based on experimental resolution (dominated by dijet mass resolution)
 - For Low-mass channels, estimate LEE of 2 (supported by pseudoexperiments in dijet mass)
 - For high-mass, estimate LEE of 2 for full range (poor mass resolution due to 𝗞_T)
- LEE of 2 for bb combination, 4 for full combination
- Max. local significance reduced to 1.3 after LEE correction

Combination Evolution

About 8% improvement in sensitivity

Changes reasonable within updates to analyses