

Bundesministerium für Bildung und Forschung

HERAPDF

36th International Conference on High Energy Physics

4 - 11 July 2012 Melbourne Convention and Exhibition Centre

Ringailė Plačakytė DESY

on behalf of:

ep Scattering at HERA

DIS cross sections provide an access to parton distribution functions in proton:

$$\frac{d^2\sigma_{NC}^{e^{\pm}p}}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \Big[Y_+ \tilde{F}_2^{\pm} \mp Y_- x \tilde{F}_3^{\pm} - y^2 \tilde{F}_L^{\pm} \Big]$$

dominant contribution
important at high Q²
$$Y_{\pm} = 1 \pm (1-y)^2$$

sizable at high y
PDFs
LO: $F_2 \approx x \sum e^2_q (q+\bar{q})$ (in NLO ($\alpha_s g$) appears)
 $xF_3 \approx x \sum 2e_q a_q (q-\bar{q})$

In LO e⁺/e⁻ charged current cross sections are sensitive to different quark densities:

$$e^{+}: \quad \tilde{\sigma}_{CC}^{e^{+}p} = x[\overline{u} + \overline{c}] + (1 - y)^{2}x[d + s]$$
$$e^{-}: \quad \tilde{\sigma}_{CC}^{e^{-}p} = x[u + c] + (1 - y)^{2}x[\overline{d} + \overline{s}]$$

HERAPDFs: Overview

HERAPDF: only HERA ep data

- uses consistent data with well understood correlations

- no need for nuclear corrections

provide compatible NLO and NNLO predictions with other PDF groups

Overview of HERAPDFs (this talk):

DATA	PDF set	-
H1-ZEUS CC,NC HERAI	HERAPDF1.0 (NLO,NNLO)	
H1-ZEUS CC,NC HERAI+(prel.)II	HERAPDF1.5 (NLO,NNLO)	recommended
CC,NC HERAI+(prel.)II +jets	HERAPDF1.6	
CC,NC HERAI +charm	HERAPDF1.0+charm	
All data above	HERAPDF1.7	
Planned: H1-ZEUS HERAI+II	HERAPDF2.0 (NLO,NNLO)	

Part of HERAPDF project: **HERAFitter**

- open source QCD fitting tool to determine parton distribution functions

HERAPDF strategy and settings

NLO,NNLO DGLAP evolution (QCDNUM, arXiv:1005.1481) PDFs parametrised (at starting scale Q_0^2) by:

 $xf(x,Q_0^2) = Ax^B(1-x)^C(1+Dx+Ex^2)$

A: overall normalisation B: small x behavior C: $x \rightarrow 1$ shape

- apply quark number and momentum sum rules

Fitted PDFs: xg, xu_v, xd_v, $x\overline{U}=x\overline{u}(+x\overline{c})$, $x\overline{D}=x\overline{d}+x\overline{s}(+x\overline{b})$

The optimal number of parameters chosen when no further improvements in the χ^2 are observed

- more flexible paramerisation than in HERAPDF1.0 used in fits with HERA II data $Q_0^2 = 1.9 \text{ GeV}^2$, $\alpha_s = 0.1176$, $Q_{min}^2 = 3.5 \text{ GeV}^2$, different HF schemes (RT in HERAPDF1.0)

Uncertainties separated into:

experimentalsmall uncertainties ($\Delta \chi^2 = 1$)modelevaluated from variation of model parameters: Q^2_{min} , f_s , m_c , m_B parametrisationresults from different parametrisation assumptions

HERAPDF1.0

HERAPDF1.0: QCD fit to combined H1 and ZEUS HERA I CC,NC data

- ultimate precision (experiments cross calibrate each other)

gluon – from F₂ scaling violation, F₁, *quarks* - from CC (flavour separation), NC

HERA I

High precision HERA II high Q^2 data (now in process of publishing!)

HERA I + II

Reduced uncertainties (mainly valence quarks)

R. Plačakytė, ICHEP, Melbourne

6

Inclusion of Jet Data: HERAPDF1.6

LO jet production in DIS:

Direct sensitivity to gluon and strong coupling constant

Reduce correlation of gluon and $\alpha_{\!_{\varsigma}}$ in PDF fit

QCD fits with jet data

- allow to constrain simultaneously $\alpha_{\mbox{\scriptsize c}}$ and gluon

HERAPDF1.6:

CC, NC HERA I+(prel.)II + 4 inclusive jet measurements from H1 and ZEUS

Inclusion of Jet Data: HERAPDF1.6

Direct access to the gluon

Heavy quark (HQ) treatment in PDFs is important

Different HQ schemes exist (different treatment of mass terms in perturbative calculation)

Combined HERA F^{cc} measurement

Data well described by HERAPDF prediction

Inclusion of Charm Data

Inclusion of All Data: HERAPDF1.7

What if fit all HERA data?

- inclusive + jets + charm + low energy data → **HERAPDF1.7**
- → important consistency check
- flexible parametrisation (as in HERAPDF1.5f)
- heavy flavour treatment as in HERAPDF1.0
 - → motivates for RT optimised at m_c^{model} (opt)
- strong coupling constant = 0.119 (as supported by the jet data)

HERAFitter Project

HERAFitter: a set of PDF fitting tools for determination of the parton distribution functions

- \rightarrow developers: H1 and ZEUS, ATLAS, CMS
- \rightarrow the first beta version released in September 2011
- → May 2012: beta2 release

			RingailePlacakyte Settings Logout
		Search	Titles Text
HER/	AFitter		
HERAFIT././Meeting20» HERAFIT./. Wiki WikiPolicy RecentChanges	HERAFitter		우 🕅 😂 🖬 🚍 🚔
FindPage HelpContents HERAFitter	Welcome to HERAFitter Project HERAFitter is a var of the HERAPDF project HERAFitter is a var of the HERAPDF project		
Page	Downloads of HERAFItter software package		
Edit (Text) Edit (GUI)	Registration Registration		
Info Subscribe Add Link	To register, please log in (upper right corner) by creating an account (firstnamelastname, example: JohnSmith) and send your request and login name to Arrange Herafitter-help@desy.de.		
Attachments More Actions:	HERAFitter Meetings		
	 User's Meetings: monthly meetings to enhance communication between use Developer's Meeting: technical weekly meetings to ensure communication ar 	rs and developers (open nong developers (restric	access) ted access)
	Developers Info (restricted to developers)		

Internal Developments

Getting help

Send email to 🖾 herafitter-help@desy.de

HERAFitter package available online at http://projects.hepforge.org/herafitter/

HERAFitter: Structure

Modular structure of HERAfitter:

- active participation and support of many theory groups
- global benchmarking platform for PDFs and QCD

HERAFitter: Usage

New ATLAS result:

The differential W^{\pm} , Z cross section data of ATLAS (2010, 35/pb) were jointly analysed with $e^{\pm}p$ cross sections from HERA

 \rightarrow ratio of W/Z cross sections together with y_z shape provide a constraint on s-quark density

First LHC publication using HERAFitter

HERAFitter mail-support: Monthly users' meetings: herafitter-help@desy.de https://znwiki3.ifh.de/HERAFitter/HERAFitterMeetings **HERA** provides unique determinations of the proton structure and compatible NLO and NNLO predictions with other PDF groups

- published final HERA II CC,NC data will follow by H1-ZEUS combination and HERAPDF2.0 set
- HERA jet and charm data provide additional constrains on gluon density and α_s , charm data help to reduce uncertainties of W,Z predictions at LHC

HERAFitter is open source QCD fit framework supported by many theory and experimental (H1, ZEUS, ATLAS and CMS) groups

- has the potential to increase the scientific output of the LHC data and to provide a flexible environment for theory benchmarking

Back-up slides

HERA Collider

Status: 1-July-2007 World's only *ep* collider 400 H1 Integrated Luminosity / pb positrons low E HERA-2 300 Longitudinally bodanied exbean + HERA ZEUS 200 100 500 1000

- $e^{\pm}(27.5 \text{ GeV})$, p(460-920 GeV), $\sqrt{s} = 225-318 \text{ GeV}$
- Two collider experiments: H1 and ZEUS

- 1994-2000: HERA I data 2003-2007 HERA II data (end of running 30.06.2007)
- ~0.5 fb⁻¹ of luminosity recorded by the each experiment

HERA-1

Days of running

1500

Deep Inelastic Scattering (DIS)

Structure function factorisation:

each structure function can be written as a convolution of a hard-scattering coefficient C and non-perturbative parton distributions:

$$F_2^V(x,Q^2) = \sum_{i=q,\bar{q},g} \int_x^1 dz \times C_2^{V,i}(\frac{x}{z},Q^2,\mu_F,\mu_R,\alpha_S) \times f_i(z,\mu_F,\mu_R)$$

determined using measured cross section

calculable in perturbative QCD

PDFs

PDF scale dependence is calculable in perturbative QCD (DGLAP evolution):

$$\frac{\partial q(x,Q^2)}{\partial lnQ^2} \propto \int_x^1 \frac{dz}{z} \left[q(z,Q^2) P_{qq}\left(\frac{x}{z}\right) + g(z,Q^2) P_{qg}\left(\frac{x}{z}\right) \right]$$
$$\frac{\partial g(x,Q^2)}{\partial lnQ^2} \propto \int_x^1 \frac{dz}{z} \left[q(z,Q^2) P_{gq}\left(\frac{x}{z}\right) + g(z,Q^2) P_{gg}\left(\frac{x}{z}\right) \right]$$

Probability via splitting functions:

PDF Determination

Experimentally measured $\sigma(x,Q^2) \rightarrow F_2(x,Q^2)$

 Q^2 dependence of F_2 is given in pQCD (DGLAP evolution equations)

x-dependence of PDFs is not calculable in pQCD

- parametrise PDFs at the starting scale Q_{a}^{2}
- evolve PDFs using DGLAP equations to $Q^2 > Q_a^2$
- construct structure functions from PDFs and coefficient functions: predictions for every data point in (x, Q^2) plane
- χ^2 -fit to the experimental data

HERAPDF strategy and settings

DGLAP at NLO \rightarrow QCD predictions

PDFs parametrised (at starting scale Q_0^2) using standard parametrisation form:

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g}, \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1+E_{u_v} x^2\right), \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}}, \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \end{aligned}$$

- A: overall normalisation
- B: small x behavior
- **C**: $x \rightarrow 1$ shape

The optimal number of parameters chosen by saturation of the χ^2

- central fit with:

10 free parameters for HERA I data 13 for HERA I+II data

xg, xu_v, xd_v, xŪ, xD where xU=xu and xD=xd+xs at the starting scale (xs=f_sxD with f_s=0.31)

 A_g, A_{uv}, A_{dv} are fixed by sum rules extra constrains for small x behavior of d- and u-type quarks: $B_{uv}=B_{dv}, B_{\overline{U}}=B_{\overline{D}}, A_{\overline{U}}=A_{\overline{D}}(1-f_s)$ for $\overline{u}=\overline{d}$ as $x \rightarrow 0$ DIS:

ep (HERA) data: quarks and gluon at small x (F_L), jets (moderate x), CC - flavour separation, heavy quark structure functions

fixed target data: higher x

neutrino DIS: flavour decomposition, x>0.01

Drell-Yan:

quark-antiquark annihilation – high x sea quarks, deuterium target – $\overline{u}/\overline{d}$ asymmetry

High Pt jets at colliders:

high x gluon

W/Z production: different quark contributions

MSTW

- includes all type of data (not yet most recent HERA data). LO, NLO and NNLO

CTEQ

 includes all type of data (CT10 includes recent combined HERA data and more Tevatron data). NLO

NNPDFs

- includes all type of data (except HERA jets). NLO, recently also LO and NNLO

HERAPDF

- HERA (combined) data. NLO and NNLO

AB(K)M

- DIS and fixed target DY data. NLO and NNLO

GJR

- DIS, fixed target DY data and Tevatron jet data. NLO and NNLO (no jets)

Main sources of difference between different PDFs:

- inclusion of different data
- methods of determining 'best fit'
- uncertainty treatment/sources
- assumptions in procedure (parametrisation)
- heavy flavour treatment

... lead to differences in the cross section predictions

PDF Fit Groups: Benchmarking (PDF4LHC)

Different PDF lead to differences in cross section predictions

G.Watt arXiv:1106.5788v1

PDF Fit Groups: Benchmarking

G.Watt

Combination of HERA data

H1 and ZEUS neutral and charged current data from HERA I period were combined

HERAPDF 1.5

HERAPDF1.0: combined inclusive HERA I arXiv:0911.0884[hep-ex] HERAPDF1.5: combined inclusive HERA I and HERA II data

Improved data precision \rightarrow Improved PDFs

HERA DIS Cross Sections vs HERA PDFs

Neutral Currents

Charged Currents

HERA PDF fit describes NC and CC data very well

HERAPDF at NNLO

NNLO HERAPDF1.5 fit is based on HERA I + II inclusive ep data → uses more flexible parametrisation form

HERA PDFs can be used for NNLO predictions at LHC

HERAPDF1.0 NNLO vs HERAPDF1.5 NNLO

HERAPDF1.5NNLO has a harder high-x gluon than HERAPDF1.0 - hence, would give a better agreement with Tevatron data

HERAPDF1.5 NNLO uncertainties are comparable to NNPDFs

HERAPDF1.5f

HERAPDF1.5f - more flexible parametrisation \rightarrow gluon more flexible and low-x d-valence is freed from u-valence

H1 and ZEUS HERA I+II 14 parameter PDF Fit H1 and ZEUS HERA I+II 10 parameter PDF Fit xf xf March 2011 March 201 $O^2 = 10 \text{ GeV}^2$ $Q^2 = 10 \text{ GeV}^2$ HERAPDF1.5f (prel.) HERAPDF1.5 (prel.) 0.8 0.8 exp. uncert. exp. uncert. model uncert. **HERAPDF** Structure Function Working Group **HERAPDF Structure Function Working Group** model uncert. parametrization uncert. xu_v xu, parametrization uncert. 0.6 0.6 HERAPDF1.5 (prel.) 0.4 0.4 xg (× 0.05) xg (× 0.05) xd, xd, 0.2 0.2 xS (× 0.05) xS (× 0.05) 0 10⁻¹ 10-2 10⁻¹ 10-3 10-3 10-2 10-4 10-4 1 1 х х

HERAPDF1.5

HERAPDF1.5f

Small difference in total uncertainty
→ swap between parametrisation and experimental uncertainties

Proton-Proton Collisions

Same PDFs can be used to predict pp collisions

 $\hat{\sigma}$ – perturbative QCD cross section

Factorisation:

 $\sigma \approx \hat{\sigma} \otimes \mathsf{PDF}$

HERAPDF Predictions for Tevatron

Predictions based on HERA PDFs describe Tevatron data well

HERAPDF Predictions for Tevatron

Predictions based on HERA PDFs describe Tevatron data well

HERAPDF Predictions for Asymmetries at LHC

W lepton asymmetry is sensitive to differences between u and d:

Latest results from ATLAS and CMS

Example: Predictions for Jets at LHC

CMS-PAS-QCD-11-004

Experimental uncertainties are comparable to theoretical ones → using data in QCD fits can improve PDF uncertainties (correlations needed!)

HERAPDF Predictions for Tevatron

 $\sqrt{s} = 1.96 \text{ TeV}$

→ if these data are fitted the resulting PDFs are within the HERAPDF1.5 errors bands

Predictions based on HERA PDFs describe Tevatron data well

HERAPDF Predictions for Tevatron: Z rapidity

The description of CDF and D0 Z rapidity by HERAPDF1.5:

without fitting these data (not taking into account PDF uncert): $\chi^2/dof=36/28$ CDF $\chi^2/dof=23/28$ D0 After fitting these data: $\chi^2/dof=27/28$ CDF $\chi^2/dof=16/28$ D0

Impact of Tevatron Z rapidity data on PDF shape is within uncertainties of HERAPDF

HERAPDF Predictions for Tevatron: W asymmetry

Even without fitting the asymmetry data the agreement is quite good

After fit:

- χ2/dof=19/13 CDF
- χ2/dof=25/11 D0
 - $\rightarrow\,$ the resulting PDFs lie within the HERAPDF1.5 error band

HERADF Predictions for Asymmetries at LHC

Early LHC data are described fairly well

- → if these data are fit, the PDFs lie within the HERAPDF1.5 error band

ATLAS and CMS pull u valence quark in opposite directions

Proton-Proton Collisions: W/Z production

Impact on the LHC predictions

- variation of m_c^{model} changes predictions of Z/W cross sections at LHC by ~3%

> A.M.Cooper-Sarkar, PDF4LHC, March 2010

- sensitivity to charm of the LHC cross section predictions comes from flavour sensitivity of the inclusive DIS data

$$xU = xu + xc$$
 $x\overline{U} = x\overline{u} + x\overline{c}$ $xD = xd + xs$ $x\overline{D} = x\overline{d} + x\overline{s}$

- where U is fixed by F_2 data larger $m_c^{model} \rightarrow less c$ in sea \rightarrow more $u \ (= d)$
- important at low Q^2 and low x

Heavy Quark treatment in QCD analysis

Factorisation:

$$F_{2}^{V,h}(x,Q^{2}) = \sum_{i \ni f, f,g} \int_{x}^{t} dz \cdot C_{2}^{V,i}\left(\frac{x}{z}, \frac{Q^{2}}{\mu^{2}}, \frac{\mu_{F}^{2}}{\mu^{2}}\alpha_{S}(\mu^{2})\right) f_{i/h}(z,\mu_{F},\mu^{2})$$

i - number of active flavours in the proton $m_c=1.5$, $m_b=4.7$ GeV

QCD analysis of the proton structure: treatment of HQ essential

Different prescriptions how to treat heavy quarks in PDF fits (HQ schemes):

Fixed Flavour Number Scheme (FFNS) *i-fixed* c(b) quarks massive, only light flavours in the proton i=3(4)

General-Mass Variable Flavour Number Scheme (GM-VFNS) *i-variable* matched scheme, different implementation used by fit groups $\rightarrow m_c^{model}$

Zero-Mass Variable Flavour Number Scheme (ZMVFNS) all flavours massless (breaks at $Q^2 \sim m_{HO}^2$)

- different implementations of general mass variable flavour number scheme for heavy flavour treatment used in this study:

```
RT standardused by MSTW08RT optimised [arXiv:1006.5925]used by CTEQ4,5,6HQACOT-fullused by CTEQ6.5,6.6,CT10S-ACOT-χused by NNPDF2.0
```

- the optimal value of parameter m_c^{model} is determined for each of these schemes (m_c^{model} (opt)), which gives the best description of the HERA data
- PDFs are used in MCFM to calculate Z/W $^{\scriptscriptstyle\pm}$ cross-section predictions

Constraints on PDFs from HERA Charm Data

Different HQ schemes have different optimal m_model

Z/W cross sections at LHC

(symbols indicate value of m^{model}(opt))

Prediction based on HERAPDF1.5 have smaller experimental uncertainty in the u/d ratio