A search for resonance decays to lepton+jet at HERA and limits on leptoquarks

Katarzyna Wichmann on behalf of the ZEUS Collaboration

- HERA Accelerator & ZEUS Detector
- Search for leptoquarks at HERA
- Limits on leptoquarks
- Single top production: appetizer
HERA Accelerator

- HERA: ep collider, $\sqrt{s} = 320$ GeV
- From 2003 polarised lepton beam
- 2 colliding beams experiments: H1 & ZEUS
 - collected 0.5 pb$^{-1}$/exp of luminosity in 1992-2007

ZEUS: multi-purpose detector at HERA
Deep Inelastic Scattering

4-momentum transfer
\[Q^2 = -q^2 = -(k - k')^2 \]
parton momentum fraction
\[x = Q^2/(2p \cdot q) \]
inelasticity
\[y = p \cdot q/(p \cdot k) \]
center of mass (c.m.s) energy \(\sqrt{s} \):
\[s = (k + p)^2 \]
at fixed c.m.s energy: \(y = Q^2/xs \)

lepton vertex: pointlike particle, determined by electroweak Standard Model (SM)
proton vertex: object with structure
quark-parton-model (QPM):
elastic scattering on pointlike parton (quark);
quark momentum distribution \(xq(x) \) inside proton

neutral current (NC): \(\gamma, Z^0 \) exchange
charged current (CC): \(W^\pm \) exchange

NC: electron + jet

CC: missing \(p_T \) + jet
Leptoquarks @ HERA

- Leptoquarks - scalar or vector colour triplet bosons, carrying both lepton (L) and baryon (B) number
 - HERA is well suited for leptoquark searches
 - Fermion number: $F = L + 3B$, $F = 0, 2$
 - spin: 0, 1

(a) @ HERA leptoquarks can be produced in s-channel for $M_{LQ} < \sqrt{s}$
(b) ...or exchanged in u-channel

(c) LQs @ HERA have the same initial and final state as NC/CC DIS
 - e-jet or ν-jet in the final state
 → interfere with the SM
Search Strategy @ HERA

- Leptoquark events: the same signature as NC or CC events
- LQ contribution in SM: peak in invariant mass distribution (for $M_{LQ} < \sqrt{s}$)
- LQ cross section has different polarization dependence than NC (or CC) cross section
 → data samples with different polarization examined separately
- Lepton scattering angle θ^* in the lepton-jets scattering frame can be used to reduce DIS background
 • leptoquarks have different distributions than NC DIS

Look for LQ-deviations from SM in NC & CC distributions
Leptoquarks in ZEUS Detector

Integrated luminosity of 366 pb\(^{-1}\) (2003-2007)

\[M_{e\text{-jet}} \]

\(e^+\text{jet} \) final state

\[M_{ejs} \, (\text{GeV}) \]

\[M_{\nu\text{-jet}} \]

\(\nu^+\text{jet} \) final state

\[M_{\nujs} \, (\text{GeV}) \]
NC Invariant Mass Distribution

in red: with cut on $\cos\theta^* < 0.4$

Good agreement between data and MC \rightarrow no evidence for LQs
CC Invariant Mass Distribution

in red: with cut on $\cos\theta^* < 0.4$

Good agreement between data and MC \rightarrow no evidence for LQs
Leptoquark Limits

• No evidence for LQs observed → limits set within BRW model
• The Buchmüller-Rückl-Wyler model:
 • Standard Model symmetry conserved
 • Lepton and baryon number conserved
 • LQ resonance production
 • LQs couple either to right-handed or to left-handed leptons
 • No flavour-violating couplings
 → 7 scalar and 7 vector 1st generation leptoquarks
 • All 14 LQs couple to eq, 2 scalar and 2 vector LQs also to νq
• Limits are set on Yukawa coupling λ (e-q-LQ coupling) using Bayesian approach

Full HERA statistics of 0.5 fb$^{-1}$ used for limit setting
Limits for Leptoquarks with F=0

Scalar LQs:
- Lower limit on M_{LQ} assuming $\lambda = 0.3$
 - $292 \text{ GeV} - 345 \text{ GeV}$

Vector LQs:
- Lower limit on M_{LQ} assuming $\lambda = 0.3$
 - $292 \text{ GeV} - 699 \text{ GeV}$
Limits for Leptoquarks with F=2

Scalar LQs:
- Lower limit on M_{LQ} assuming $\lambda = 0.3$
 - $290 \text{ GeV} - 506 \text{ GeV}$

Vector LQs:
- Lower limit on M_{LQ} assuming $\lambda = 0.3$
 - $292 \text{ GeV} - 376 \text{ GeV}$
Summary

- New results using full HERA luminosity of 0.5 fb$^{-1}$ on LQs: **DESY-12-077**
- No evidence of leptoquarks observed
 → Coupling limits set as function of LQ mass
- Limits for some LQs similar to results from other experiments
- ZEUS results competitive and complementary to other experiments

HERA limits are the best to date at high masses
High-P_T Lepton and Missing E_T

- another example of similar topology:

\[
\begin{align*}
\text{single top production}
\end{align*}
\]

- no evidence of single top found

- limits set on anomalous single top production

Search for single top production in ep collisions at HERA

S. Antonelli (CNAF-INAF Bologna) on behalf of the ZEUS Collaboration

In ep (with a electron or positron) collisions at HERA, the production of single top quark is possible due to the large centre-of-mass energy $|s| = 315$ GeV. The dominant production process of single top quark in the Standard Model (SM) is the charged current (CC) deep inelastic scattering (DIS) reaction $ep \rightarrow \ell^- X$, which has a cross section of less than 1 fb [2]. No noticeable production is hence expected in our data sample and any excess can be attributed to new physics. In several extensions of the SM, single top production can happen via a flavour changing neutral current (FCNC) process mediated by a heavy scalar or pseudoscalar boson (or Z') [3]. The analysis has been performed with 0.37 fb$^{-1}$ and extends the previously published ZEUS results [4] corresponding to 0.15 fb$^{-1}$. Limits for single top production via FCNC were compared with the previous ZEUS one [4], for a total luminosity of 0.50 fb$^{-1}$. The cross section upper limit at 95% Credibility Level (C.L.) was 1.3 pb at a centre-of-mass energy of $s = 315$ GeV. The results of this analysis have been published in [5].

Event selection

The event selection was optimized for single-top production via photon exchange, looking for the dominant decay $t \rightarrow W b$ and subsequent W decay to $\ell \nu$ and their respective antiparticles. The selection is based on imposing an isolated, high-p_T, leptonic, large missing transverse momentum and high invariant mass $m_{t\bar{t}}$.

Preselection plots

The FCNC couplings could induce single-top production in ep collisions. In this process, the incoming lepton exchanges a Z' or Z with an up quark in the proton, yielding a top quark in the final state. Owing to the large Z' mass, this process is more sensitive to a coupling of the type y. Furthermore, large values of y, the fraction of the proton momentum carried by the Z', are needed to produce a top quark. Since the Z'-quark production distribution function (PDF) of the photon is dominant at large y, the production of single-top quarks is most sensitive to the y coupling.

Systematic uncertainties

The main contribution to the systematic uncertainties on the predicted SM events is due to the following sources:

- the theoretical uncertainty on the W background normalisation, $15%$
- the statistical uncertainty on the total SM prediction after the final selection, $13%$ and 9% for the e- and μ-channels, respectively.
- the uncertainty on the DIS background, 15% for the preselection and 8% for the final selection in the e- and μ-channels.

Limits evaluation

Since no visible excess was found beyond the SM prediction, a limit, assuming a vanishing y, was evaluated on the signal cross section using a Bayesian approach, ensuring a constant prior on the cross section σ. The results are $\sigma < 0.24$ (95% C.L.) pb at $s = 315$ GeV. Such limit was converted into a limit on the coupling $\lambda_{y\ell} < 0.66$ (95% C.L.). The result of this analysis was combined with the previous ZEUS result [4]: $\lambda_{y\ell} < 0.43$ (95% C.L.). Constraints on the anomalous top branching ratios $e \rightarrow \ell \nu (\ell \nu)$ and $e \rightarrow \ell \gamma$ were also evaluated assuming a non-zero coupling y. Such limits were evaluated in the $(\ell \nu, \ell \gamma)$ plane following a Bayesian approach.

This figure shows the ZEUS boundary in the $(\ell \nu, \ell \gamma)$ plane compared to limits from other experiments. The e and μ lepton cuts, contrary to HERA, have similar sensitivities to y and e-quark; their limits are hence on both decays $e \rightarrow \ell \nu$ with y. The yellow area is excluded by ZEUS. The dark shaded region denotes the area uniquely excluded by ZEUS. The limits set by the ZEUS experiments in the region where 2γ is less than -4% are the best to date.
Single-top Production: Appetizer

- Dark shaded area uniquely excluded by ZEUS

For details see ZEUS Single-top Poster