Search for Charged Massive Long-Lived Particles

Yuri Gershtein for DØ collaboration

Outline

- Introduction
- Three search channels
 - pair production using ToF (Run IIa) PRL 102, 161802 (2009)
 - pair production using ToF and dE/dx (Run IIb)
 - single production using ToF and dE/dx
- Combination
- Summary & outlook

Charged Massive Long-lived Particles (CMLLP)

- Long-lived: $c \tau \ge O(meter)$
- Weakly interacting
 - stau
 - wino
 - higgsino

Propagate through detector as a slow heavily ionizing "muon"

- Color-charged
 - stop

Need to take into account detectorspecific (re-)hadronization effects (<u>model dependent</u> – different systematics for different detectors and analysis methods)

7/6/2012 Yuri Gershtein

DØ Luminosity

Stop propagation

- ~60% of stops hadronize into charged particles
- Tracker is quite light, very small λ
 - keep their charge
- Then traverse calorimeter (>10 λ)
 - Need to remain charged to register in inner muon system
- Then pass through iron yoke
 - Need to remain charged to register in the outer muon system
- Stop and anti-stop behave differently
 - Stop forms baryons (charge 0, +1, +2, with model-dependent probabilities), take probability 1/3 each
 - Anti-stops form mesons, take 50% probability to be charged
 - If pair-produced, with these assumptions, to be charged in all three locations
 - Both: 4% (36% if no charge flipping)
 - At least one: 38% (84% if no charge flipping)

Long-lived charginos

- If lightest gaugino is almost pure wino or higgsino
- Fairly common in string-theory inspired anomaly-mediated SUSY breaking models
 - Leads to mass degeneracy of lightest charged and neutral gauginos

$\Delta m_{ ilde{\chi}_1}({ m \; MeV})$	125	130	135	138	140	142.5	150
$c au(\mathrm{cm})$	1155	918.4	754.1	671.5	317.2	23.97	10.89

7/6/2012

ToF in Muon System

- Muon system used for triggering and offline ToF measurement
- Readout time gate is wider than the trigger gate

7/6/2012 Yuri Gershtein

ToF in Muon System

If two candidates are present, require small asymmetry to ensure good measurement, for single candidate – cut on speed χ^2

dE/dx in silicon tracker

- Exclude 20% of the highest amplitude hits to reduce Landau tails
- Measured dE/dx decreases with radiation damage adjust MC and data for all time epochs to achieve most probable dE/dx = 1

dE/dx in silicon tracker

- Exclude 20% of the highest amplitude hits to reduce Landau tails
- Measured dE/dx decreases with radiation damage adjust MC and data for all time epochs to achieve most probable dE/dx = 1
- Model dE/dx measurement accuracy based on number of hits introduce dE/dx significance

$$dE/dx$$
 significance = $\frac{dE/dx - 1}{RMS(dE/dx)_{N_c}}$

Double CMLLP Search

- Require exactly two muons
 - pT> 55, 50 GeV
 - Good quality, trigger match,
 cosmic veto, >= 3 silicon hits
 - β <1, β asym <0.35
- Train BDT
 - \bullet β , β signif, dE/dx, dE/dx_{signif}

Single CMLLP Search

ri Gershtein

- Require one muon
 - pT> 60 GeV
 - isolation
 - Good quality, trigger match, cosmic veto, >= 3 silicon hits
 - $\beta < 1$, $\chi^2/\text{dof} < 2$
- Data driven background estimate using ABCD method M_T and β
 - $\beta > 1$ is background dominated
 - M_T<200 GeV is background dominated (W)
- Train BDT
 - \bullet β , β signif, dE/dx, dE/dx_{signif}
 - number of silicon and muon scint hits

Combination

- Remove events with two CMLLP's from single analysis
- Instead of cutting on BDT, use the entire shape for likelihood analysis

7/6/2012

Yuri Gershtein

Summary

- We searched for charged massive long-lived particles in DØ data using time of flight and ionization measurements
- For color-neutral particles, our result excludes long-lived charginos below 250-275 GeV depending on model
- For long-lived stop the result has somewhat different systematic error from propagation of stop hadrons in matter

backups

Selection details: single CMLLP

- Single muon trigger without L2 tight timing cut
- ullet At least one muon in the event, only highest p_{T} muon is used
 - muon quality cut:
 - √ |η_{det}|<1.6
 - √ mediumnseg3 without cosmic veto
 - √ medium track
 - √ NPtight isolation
 - analysis cut:
 - √ |zatDCA|<40cm
 - √ p_T>60GeV
 - γ β<1, speed χ²<2., where speed $\chi^2 = \frac{1}{N-1} \Sigma \frac{(\beta-\beta_i)^2}{\sigma_i^2}$
 - \checkmark matching χ^2 <100. between muon and central track
 - \checkmark cosmic ray veto (timing cut and psuedo-acolinearity cut $\Delta \alpha = |\Delta \phi + \Delta \theta 2\pi|$)

Selection details: double CMLLP

- Single muon trigger without L2 tight timing cut
- Exactly two muons in the event
 - muon quality cut:
 - √ |η_{det}|<2.0
 - √ mediumnseg3 without cosmic veto
 - √ medium track
 - ✓ NPtight isolation
 - analysis cut:
 - ✓ |zatDCA|<40cm</p>
 - \checkmark p_T(1)>55GeV, p_T(2)>50GeV
 - \checkmark $\beta_{1,2}<1$, speed asymmetry $|\beta_1-\beta_2|/|\beta_1+\beta_2|<0.35$
 - \checkmark matching χ ²<100. between muon and central track
 - √ cosmic ray veto (dca cut, timing cut and psuedo-acolinearity)

7/6/2012