Search for Universal Extra Dimensions in pp Collisions

Angelo Santos SPRACE-IFT/Unesp

On Behalf of DØ Collaboration

- Tevatron and DØ
- Universal Extra Dimensions
- Channel of $\mu^{\pm}\mu^{\pm}$ + Jets + $\not\!\!E_T$
- Background Estimation
- Statistical Test
- Conclusion

Tevatron and DØ

- Tevatron
 - $p\bar{p}$ collider
 - $-\sqrt{s}$ = 1.96 TeV
 - Detectors: CDF and DØ
 - Run II int. Lumi: 10 fb⁻¹

DØ Detector

- Silicon Microstrip and Central Fiber Trackers
- Liquid-Ar/Uranium calorimeter
- Muon chambers
- Solenoid (2T) + Toroid (1.8T)

Universal Extra Dimensions

- Universal ED → all fields in the extra dimensions
- Periodic boundary conditions
 - Discrete KK modes

$$M_n^2 = M_0^2 + \frac{n^2}{R^2}, \quad n = 0, 1, 2...$$

- Minimal UED (MUED)
 - 1 extra dimension
 - First KK level $\rightarrow n = 1$
- Parameters:
 - Size of extra dimension R
 - Cutoff scale Λ

MUED: Production

---- First muon

Second muon

— Third muon

- Lightest KK particle – Stable $\rightarrow \mathbb{Z}_{T}$
 - Dark matter candidate
- Promising channel
- KK modes nearly degenerate $- \text{If } (M_{V_1}) \approx (M_{\ell_1}) \rightarrow \text{very low } p_T(\ell)$ $\rightarrow \text{ Bellow detection threshold } -$
- Final state

$$\mu^{\pm}\mu^{\pm} + Jets + \not\!\!\!E_{\mathrm{T}}$$

400

350

300

250

200

150

100

90 10 p_ (GeV/c)

Data and MC Events

- 7.3 fb⁻¹ of Data
 - April/2002 → July/2010
- Backgrounds
 - W+Jets, Z+Jets,
 - -WW/WZ/ZZ
 - $-t\overline{t}$.
- MUED signal: 9 selected points
 - $R^{-1} = 200, ..., 320 \text{ GeV} \text{ (steps of 15 GeV)}$ $- \Lambda = 10 \text{ TeV}$

Selection of Events

- At least
 - 1 single muon trigger
- At least
 - 2 muons of the same charge
- Muon track in the muon system matched to the muon track in the central tracking system

- $15 < p_{T1} < 200 \text{ GeV}$
- *p*_{T2} > 10 GeV
- *₽*_T > 25 GeV
- $M(\mu^{\pm},\mu^{\pm}) < 250 \text{ GeV}$
- 0.25 < $\Delta \phi(\mu^{\pm}, \mu^{\pm})$ < 2.9 rad
- dca(µ_{1,2}, PV) < 0.05 cm
- $\Delta z < 1 \text{ cm}$
- $|\eta| < 1.5$

Multijet Background

- $b\bar{b}$ and $c\bar{c} \rightarrow$ Multijet background
 - Multijet background estimated from data
- UED signal
 - $W_1 W_1 / W_1 Z_1 / Z_1 Z_1 \rightarrow \mu^{\pm} \mu^{\pm} + X$

No correlation between μ_1 and μ_2 directions

No correlation between μ and jet directions

- Multijet background
 - Semileptonic meson decays

Correlations between μ and jet directions

Isolated muons

Non-isolated muons

Estimation of Multijet Background

• Define 2 samples depending on μ isolation

Ssample

• Normalization factors from integrals I_i ($i = N_{Jets}$)

Qsample

A. S. Santos

Jet

Electroweak Contamination

- High p_T region
 - Significant contribution from other SM processes
 - Mainly W + Jets

 $W \rightarrow$ isolated muon

Jets \rightarrow non-isolated muon

Subtract electroweak contribution

BDT: Multivariate Analysis

- Increase sensitivity to the UED signal
 - Discriminate between signal and background
- Several input variables:

 $-p_{T1}, p_{T2}$

$$-Sig(\not\!\!E_{\rm T}) = \frac{\not\!\!E_{\rm T}}{\sum_{objects} \sigma_{proj}^2}$$

overtraining check for classifier: BDT

BDT Output

Extraction of Limits

- Statistical studies → CLs
 - $-R^{-1} \le 260 \text{ GeV}$ @ 95% C.L.
 - The first direct limit on UED.

Phys. Rev. Lett., 108, 131802 (2012)

Conclusions

- Search for signal of extra dimensions
 - All fields in the extra dimensions

Compactified extra dimensions

- Minimal UED model \rightarrow 1 extra dimension
- DØ @ Tevatron:

- 1.96 TeV and
$$\int \mathcal{L} = 7.3 \text{ fb}^{-1}$$

- No excess → The first direct limit on UED
 - Phys. Rev. Lett., 108, 131802 (2012)

 $R^{-1} \leq 260 \text{ GeV} @ 95\% \text{ C.L.}$

Definition of samples

- Muon isolation variables $\mathcal{I}_{cal} = \sum \frac{E_T^{0.1 < \Delta R < 0.4}}{p_T^{\mu}}$
 - $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$

 $\mathcal{I}_{trk} = \sum \frac{p_T^{\Delta R < 0.5}}{n_T^{\mu}}$

- Defining samples
 - S sample \rightarrow 2 isolated muons
 - $\mathcal{I}_{cal} < 0.4 \quad + \quad \mathcal{I}_{trk} < 0.12$
 - or $\mathcal{I}_{cal} < 0.4$ + $\mathcal{I}_{trk} < 0.25$
 - Q sample \rightarrow 1 isolated and 1 non-isolated muon

One muon fail one of the isolation criteria.

MUED: Mass Spectrum

TABLE I: Masses of KK particles for each R^{-1} value used in the MC generation with corresponding total production cross section.

$\frac{R^{-1}}{(\text{GeV})}$	Masses (GeV)					Cross Section
	γ_1	Z_1	g_1	ℓ_1	Q_1	(pb)
200	201	230	269	207	249	34.9 ± 0.2
215	216	245	287	222	266	20.4 ± 0.1
230	231	260	305	238	283	12.1 ± 0.1
245	246	274	323	253	300	7.24 ± 0.05
260	261	289	341	268	317	4.39 ± 0.03
275	276	304	359	284	334	2.69 ± 0.02
290	291	319	377	299	351	1.65 ± 0.01
305	306	335	395	314	368	1.02 ± 0.06
320	321	350	413	330	385	0.63 ± 0.01

(*) All KK gluon and quark production modes included.