

Search for First Generation Leptoquarks at $D\phi$

Bjoern Penning Fermilab

- Standard model is believed to be low energy effective theory
- Hints of physics beyond SM
- DØ performed search program for new particles and models
 - Leptoquark (LQ) is predicted by many extensions of the Standard Model (GUT, technicolor, SUSY, etc.)
 - Leptons and quarks don't interact directly in SM
 - LQ carries both, lepton and baryon numbers → mediating boson between each
- Can be scalar or vector field, three generations
- Short-lived and decays to a lepton and a quark

The Tevatron

Björn Penning, ICHEP 2012, Melbourne July 7 2012

00000

- Produced via quark-antiquark annihilation or gluon-gluon fusion:
 - $q + q \rightarrow LQ + LQ$
 - $g + g \rightarrow LQ + LQ$
- Assume no intergenerational mixing
 - Search for 1st Generation scalar LQ
- LQ can decay to lq or vq'
- Pair production: eqeq, eqvq, and vqvq.
 - Define branching ratio $\beta = Br(LQ \rightarrow e + q)$, then probability of LQ pair decaying to eqvq is $2\beta(1 - \beta)$
- $\sigma \times BR$ maximal for $\beta = 0.5$

- 5.4 fb⁻¹ of Data collected at DØ between 2002 and 2009
- SM backgrounds:
 - Multijet (MJ) background estimated from data
 - W/Z+jets, tt, single top, diboson (WW, WZ and ZZ)
 Normalized to the (N)NLO
- Leptoquark signal normalized to NLO

M_{LQ} (GeV)	200	210	220	230	240	250	260	270
$\sigma~({ m fb})$	268	193	141	103	76	56	42	31
M_{LQ} (GeV)	280	290	300	310	320	340	360	
σ (fb)	23	17	13	10	$\overline{7.4}$	4.2	$\overline{2.4}$	

Event Selection

- Channel LQLQ \rightarrow eqvq;
- A priori don't know assignment of jet to e, v
- Choose best pairing:

- matching by minimizing differences in p_{T} from the combination of (jet,e) and (jet,v)
- reconstruct LQ from the both combinations, and pick the combination such that $\Delta \phi$ (LQ1,LQ2) is closest to π (back to back)
- matching by minimizing $\Delta \phi$ between the decay products of LQs

	m _{LQ} (GeV)	200	240	280
- matching by minimizing the differences in m _T reconstructed	Рт	0.46	0.47	0.47
from (jet,e) and (jet,v), since	$\Delta \phi(LQ_1, LQ_2)$	0.61	0.59	0.58
the LQs are produced with	$\Delta \phi$ (dec. prod)	0.48	0.47	0.45
same mass	$m_{T1}=m_{T2}$	0.77	0.75	0.74

- Cut based analysis
- **Preselection:**
 - 1 electron, $p_T > 15$ GeV,
 - MET > 15 GeV
 - \geq 2 jets, p_T > 20 GeV,
 - Multijet removal: MET/50 + $m_T(e, MET)/70 \ge 1$

Björn Penning, ICHEP 2012, Melbourne July 7 2012 5 4 fb⁻¹

Data

 $(h)^{7}$

- Cut based analysis
- Preselection:
 - 1 electron, $p_T > 15$ GeV,
 - MET > 15 GeV
 - \geq 2 jets, p_T > 20 GeV,
 - Multijet removal: MET/50 + $m_T(e, MET)/70 \ge 1$

Björn Penning, ICHEP 2012, Melbourne July 7 2012 54 fb⁻¹

Data

(h)⁸

- Cut based analysis
- Preselection:
 - 1 electron, $p_T > 15$ GeV,
 - MET > 15 GeV
 - \geq 2 jets, p_T > 20 GeV,
 - Multijet removal: MET/50 + $m_T(e, MET)/70 \ge 1$

Björn Penning, ICHEP 2012, Melbourne July 7 209, 25.4 fb⁻¹

Data

- Normalization of signal and and background (6%-10%) processes,
- MJ background (20%),
- Integrated luminosity (6.1%),
- Lepton trigger and identification (4%)
- Jet Energy Scale, Resolution and Identification (4-7%)

Results

- Using S_T with final selection to search for LQ
- No excess in data \Rightarrow limits set

For β =0.5 LQ with mass below 326 GeV is excluded

ഫ 1

- Tevatron delivered 12fb⁻¹ of data
- Results on the search for first generation scalar LQ pair production in evjj final state
- Scalar LQ with mass below 326 GeV for β =0.5 excluded
- DØ/Tevatron had rich program searching for New Physics
- Strong limits set, no discovery
- Torch of NP (Exotics, Susy) has been handed over to the LHC, hope for exciting news soon

Björn Penning, ICHEP 2012, Melbourne July 7 2012

• Previous published DØ result puts lower limit on a scalar LQ mass at 264 GeV in ejvj channel, and 284 GeV when combined with ejej and vjvj (β = 0.5)

Recent ATLAS and CMS dominating all searches

Björn Penning, ICHEP 2012, Melbourne July 7 2012