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Motivation

• Standard model is believed to be low energy effective theory

• Hints of  physics beyond SM

• DØ performed search program for new particles and models

- Leptoquark (LQ) is predicted by many extensions of  the 
Standard Model (GUT, technicolor, SUSY, etc.)

- Leptons and quarks don’t interact directly in SM

- LQ carries both, lepton and baryon numbers → mediating 
boson between each

• Can be scalar or vector field, three generations

• Short-lived and decays to a lepton and a quark
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The Tevatron
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• Central tracking: 
silicon vertex detector and 
fiber tracker in 2T field 

• Calorimeter: 
hermetic coverage |η|<4.2,
Liquid Argon Calorimeter

• Muon System: 
excellent purity and 
coverage: |η| < 2

12 fb-1

11 fb-1

Results presented here
based on ~5.4fb-1

of recorded luminosity

Avg. data-taking efficiency: >90%

DØ
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LQ production

• Produced via quark-antiquark annihilation or gluon-gluon 
fusion:

- q + q → LQ + LQ 

- g + g → LQ + LQ

• Assume no intergenerational mixing

- Search for 1st Generation scalar LQ

• LQ can decay to lq or νq’

• Pair production: eqeq, eqνq, and νqνq.

- Define branching ratio β= Br(LQ → e + q), then 
probability of  LQ pair decaying to eqνq is 2β(1 - β)

• σ x BR maximal for β = 0.5
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Introduction
! LQ can be produced singly or in pairs
! Produced via quark-antiquark annihilation or gluon-gluon 

fusion:

q + q " LQ + LQ

g + g " LQ + LQ

! Assume no intergenerational mixing
# search for the first generation

! LQ pair decays to 1 of 3 final states: eqeq, eqνq, and νqνq.
– Define branching ratio β = Br(LQ " e + q), then probability of LQ 

pair decaying to eqνq is 2β(1 - β)
! Cross section times branching ratio is maximized for β = 0.5
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Data and Background Samples

• 5.4 fb-1 of  Data collected at DØ between 2002 and 2009

• SM backgrounds:

- Multijet (MJ) background estimated from data

- W/Z+jets, tt, single top, diboson (WW, WZ and ZZ) 
Normalized to the (N)NLO

• Leptoquark signal normalized to NLO

5
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tion leptoquark to decay to eq. Then the probability for
a leptoquark to decay to νeq′ is (1 − β), and the prob-
ability for a leptoquark pair to decay to the final state
eqνeq′ is BR(LQLQ → eqνeq′) = 2β(1 − β). Thus, the
probability for the final state eqνeq′ is maximized when
β = 0.5.
Limits on the production of first generation lepto-

quarks have been reported by the DELPHI [4], OPAL [5,
6], H1 [7], ZEUS [8], CDF [9], and D0 [10] Collaborations.
Recently, CMS [11, 12], and ATLAS [13] published the
first searches for scalar leptoquark pair production at the
CERN LHC.
The D0 detector consists of tracking, calorimeter, and

muon systems [14–16]. The central-tracking system
consists of a silicon microstrip tracker and a central
fiber tracker, both located within a 2 T superconducting
solenoid. A liquid-argon and uranium calorimeter con-
sists of a central section (pseudorapidity |η| < 1.1 [17])
and two end sections (1.5 < |η| < 4.2). The calorimeters
have fine transverse and longitudinal segmentation with
three principal layers identified as electromagnetic, and
fine and coarse hadronic. An outer muon system (|η| < 2)
consists of a layer of tracking detectors and scintillation
trigger counters in front of 1.8 T toroids, followed by two
similar layers after the toroids [18]. Data were collected
with the D0 detector at the Fermilab Tevatron pp̄ Col-
lider operating at

√
s = 1.96 TeV between August 2002

and June 2009, and correspond to an integrated luminos-
ity of 5.4 fb−1.
An electron is identified from energy deposits in the

electromagnetic calorimeter that are consistent with the
shower development expected for an electron and have a
matching track extrapolated from the central tracker.
Jets are reconstructed using a midpoint cone algo-

rithm, with a cone size of 0.5 [19]. The jet energy is
corrected to the particle level using jet energy scale cor-
rections determined from data [20]. The missing trans-
verse energy ( /ET ) is reconstructed from all the cells of the
electromagnetic and hadronic calorimeters, except for the
coarse hadronic sector where a noise-reduction algorithm
is applied. Additional corrections are then applied for all
identified objects including jets, electrons, and muons.
Events must satisfy at least one trigger from the single-

electron and electron+jets suites of triggers. For all data
samples, trigger objects are required to match the recon-
structed objects. The trigger efficiencies are measured in
data and parameterized for specific lepton and jet iden-
tification criteria.
Scalar leptoquark pair Monte Carlo (MC) samples are

generated using pythia [21] with CTEQ6L1 [22] par-
ton density functions. Signal samples are produced for
different LQ masses between 200 and 360 GeV. The cor-
responding cross sections at NLO are listed in Table I.
Diboson (WW , WZ and ZZ) background samples are

produced with pythia making use of the parton distri-
bution functions CTEQ6L1. The tt̄ and V (V = W or
Z)+jets events are simulated with the matrix-element
generator alpgen [23], interfaced to pythia for subse-

TABLE I: Scalar LQ pair production cross sections, calcu-
lated at NLO, for different MLQ [3].

MLQ (GeV) 200 210 220 230 240 250 260 270
σ (fb) 268 193 141 103 76 56 42 31

MLQ (GeV) 280 290 300 310 320 340 360
σ (fb) 23 17 13 10 7.4 4.2 2.4

quent parton showering and hadronization. Single top
quark production is simulated using comphep [24]. The
cross sections for background processes are calculated
at NLO (diboson [25]) and next-to-next-to-leading or-
der (NNLO) (V+jets [26] and tt̄ [27]). We correct the
generated spectrum of the transverse momentum (pT ) of
the Z boson in MC to match a corresponding dedicated
measurement [28]. The pT spectrum of the W boson
is corrected taking into account the differences between
predicted Z and W boson pT spectra at NNLO [29].
A full geant-based detector simulation program [30],

followed by the same reconstruction program as utilized
for data, is used to process signal and background events
from MC. In order to model detector noise and contri-
butions from the presence of additional pp̄ interactions,
events from randomly selected beam crossings with the
same instantaneous luminosity profile as data are over-
laid on the simulated events. Background from multijet
production (MJ), where one of the jets mimics an elec-
tron, is evaluated from data using a data driven tech-
nique [31]. In MC simulations, electron energies are cor-
rected so they match those obtained from data. In addi-
tion, residual differences in jet energy scale and resolution
between data and MC are reduced by applying dedicated
corrections to MC events.
In the eqνeq′ final state, it is not known a priori how

to assign the jets to the leptoquark decaying to eq or
νeq′. Therefore, to reconstruct the properties such as
mass and pT of the leptoquarks from the final products,
an algorithm is needed to choose the best pairing. We do
not impose a requirement on the number of jets, but we
use only the two leading pT jets for pairings. There are
two possible combinations, corresponding to the leading
jet pairing with either the electron or the neutrino. We
found that it is most effective to choose the pairing that
minimizes the difference between the transverse masses,
MT =

√

E2
T − $p2T , where ET and $pT are the transverse

energy and the transverse momentum vector of the two
LQs. This pairing algorithm is successful in making the
correct assignment in about 75% of MC signal events.
Events are selected to be consistent with the LQLQ →

eqνeq′ process. We require one electron with pT >
15 GeV in the central calorimeter region |ηe| < 1.1;
/ET > 15 GeV, to be consistent with the undetected
neutrino; and at least two jets with pT > 20 GeV and
|ηjet| < 2.5. To suppress MJ background, events are re-
quired to satisfy /ET /50+M eν

T /70 ≥ 1, where M eν
T is the

transverse mass of the (e, ν) combination, and /ET and
M eν

T are in GeV.
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Event Selection

• Channel LQLQ → eqνq;

• A priori don’t know assignment of  jet to e, ν

• Choose best pairing:

- matching by minimizing differences in pT from the combination of  (jet,e) and 
(jet,ν) 

- reconstruct LQ from the both combinations, and pick the combination such 
that Δϕ(LQ1,LQ2) is closest to π (back to back)

- matching by minimizing Δϕ between the decay products of  LQs

- matching by minimizing the 
differences in mT reconstructed
from (jet,e) and (jet,ν), since 
the LQs are produced with 
same mass 
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Signal reconstruction

• Channel LQLQ ! eqνq;
– explored ways to pair jets and e/! coming from the same LQ

" Two possible combinations: [(j1,e),(j2,ν)] and [(j1,ν),(j2,e)]
1. matching by minimizing differences in pT from the combination of (jet,e) 

and (jet,ν)
2. reconstruct LQ from the both combinations, and pick the combination 

such that ∆φ(LQ1,LQ2) is closest to π
3. matching by minimizing ∆φ between the decay products of LQs
4. matching by minimizing the differences in mT reconstructed from (jet,e) 

and (jet,ν), since the LQs are produced with the same mass

mLQ (GeV) 200 240 280

pT 0.46 0.47 0.47

Δϕ(LQ1, LQ2) 0.61 0.59 0.58

Δϕ(dec. prod) 0.48 0.47 0.45

mT1=mT2 0.77 0.75 0.74
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Signal Selection
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TABLE II: Event counts and the predicted number of signal
events for MLQ = 260 GeV and β = 0.5 after each selection
requirement.

Data Total background Signal
Preselection 65992 65703± 5958 50± 7

Meν
T > 110 GeV 990 986± 82 34± 5∑

MLQ > 350 GeV 64 55± 4 27± 4
ST > 450 GeV 15 15± 1 24± 3

At this stage we observe 65992 data events, while we
expect 65703±61(stat)±5958(sys) from SM background
and 50.4±0.4(stat)±6.8(sys) events from scalar LQ pro-
duction for MLQ = 260 GeV and β = 0.5. Figure 1(a)
shows the M eν

T distribution for the data and SM pro-
cesses. Data are consistent with the SM predictions. To
reduce the dominant SM V+jets background, we require
M eν

T ≥ 110 GeV. The pairing algorithm described previ-
ously allows us to reconstruct MLQ. Since the longitu-
dinal component of the neutrino momentum, pz, is not
measurable, we reconstruct only the visible mass of the
decay LQ → νeq′ as MLQ = M(jet + νvis), where the
four vector of νvis is given as (/px, /py, 0, /ET ). Figure 1(b)
shows the distribution of the sum

∑

MLQ of the invariant
mass of the decay LQ → eq and the visible mass of the
decay LQ → νeq′ after the requirement M eν

T ≥ 110 GeV.
We then use

∑

MLQ to reduce SM backgrounds, fur-
ther requiring that

∑

MLQ > 350 GeV. Finally, we re-
quire that the scalar sum of the pT of the lepton, the
/ET , and the two jets, ST , shown in Fig. 1(c) after all
selections, be greater than 450 GeV. Selection criteria
are optimized to achieve the best expected sensitivity for
MLQ = 260 GeV. This yields 15 observed events for an
expected background of 14.8±0.6(stat)±1.1(sys) events.
The event counts after each requirement are shown in Ta-
ble II.

Systematic uncertainties which affect only the nor-
malization of the background and the signal efficiency
include uncertainties on cross sections of signal (10%)
and background (6%− 10%) processes, normalization of
the MJ background (20%), integrated luminosity (6.1%),
and lepton trigger and identification (4%). Uncertain-
ties which also affect the differential distribution of ST

which is the quantity used to set the limits on LQ are due
to the jet energy resolution and scale, jet identification
efficiency, parton distribution functions, and the model-
ing of the jet pT distribution of the dominant W+jets
background. Their impacts are evaluated by repeating
the analysis with values varied by ±1 standard deviation
(SD). For the uncertainty on the jet pT modeling, the im-
pact is estimated by comparing the jet pT distributions
between alpgen and data unfolded to particle level from
the recent D0 measurement [32]. The ratio is applied as
weight to the W+jets jet pT distribution, and the new
distribution is taken as ±1 SD band.

The distribution of the ST after all selection require-
ments, shown in Fig. 1(d), is used as a discriminant to
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FIG. 1: (color online) (a) Meν
T distribution after preselec-

tion, (b)
∑

MLQ for Meν
T > 110 GeV, (c) the ST for

Meν
T > 110 GeV and

∑
MLQ > 350 GeV, and (d) the ST

distribution after the final selection, which is used to set an
upper limit on the LQ pair production cross section.

• Cut based analysis

• Preselection:

- 1 electron, pT > 15 GeV, 

- MET > 15 GeV

- ≥2 jets, pT > 20 GeV,

- Multijet removal:  MET/50 + mT(e, MET)/70 ≥ 1

mLQ=240 GeV Data Total Bkgd. Signal

Preselection 65992 65703 ± 5958 50 ± 7
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TABLE II: Event counts and the predicted number of signal
events for MLQ = 260 GeV and β = 0.5 after each selection
requirement.

Data Total background Signal
Preselection 65992 65703± 5958 50± 7

Meν
T > 110 GeV 990 986± 82 34± 5∑

MLQ > 350 GeV 64 55± 4 27± 4
ST > 450 GeV 15 15± 1 24± 3

At this stage we observe 65992 data events, while we
expect 65703±61(stat)±5958(sys) from SM background
and 50.4±0.4(stat)±6.8(sys) events from scalar LQ pro-
duction for MLQ = 260 GeV and β = 0.5. Figure 1(a)
shows the M eν

T distribution for the data and SM pro-
cesses. Data are consistent with the SM predictions. To
reduce the dominant SM V+jets background, we require
M eν

T ≥ 110 GeV. The pairing algorithm described previ-
ously allows us to reconstruct MLQ. Since the longitu-
dinal component of the neutrino momentum, pz, is not
measurable, we reconstruct only the visible mass of the
decay LQ → νeq′ as MLQ = M(jet + νvis), where the
four vector of νvis is given as (/px, /py, 0, /ET ). Figure 1(b)
shows the distribution of the sum

∑

MLQ of the invariant
mass of the decay LQ → eq and the visible mass of the
decay LQ → νeq′ after the requirement M eν

T ≥ 110 GeV.
We then use

∑

MLQ to reduce SM backgrounds, fur-
ther requiring that

∑

MLQ > 350 GeV. Finally, we re-
quire that the scalar sum of the pT of the lepton, the
/ET , and the two jets, ST , shown in Fig. 1(c) after all
selections, be greater than 450 GeV. Selection criteria
are optimized to achieve the best expected sensitivity for
MLQ = 260 GeV. This yields 15 observed events for an
expected background of 14.8±0.6(stat)±1.1(sys) events.
The event counts after each requirement are shown in Ta-
ble II.

Systematic uncertainties which affect only the nor-
malization of the background and the signal efficiency
include uncertainties on cross sections of signal (10%)
and background (6%− 10%) processes, normalization of
the MJ background (20%), integrated luminosity (6.1%),
and lepton trigger and identification (4%). Uncertain-
ties which also affect the differential distribution of ST

which is the quantity used to set the limits on LQ are due
to the jet energy resolution and scale, jet identification
efficiency, parton distribution functions, and the model-
ing of the jet pT distribution of the dominant W+jets
background. Their impacts are evaluated by repeating
the analysis with values varied by ±1 standard deviation
(SD). For the uncertainty on the jet pT modeling, the im-
pact is estimated by comparing the jet pT distributions
between alpgen and data unfolded to particle level from
the recent D0 measurement [32]. The ratio is applied as
weight to the W+jets jet pT distribution, and the new
distribution is taken as ±1 SD band.

The distribution of the ST after all selection require-
ments, shown in Fig. 1(d), is used as a discriminant to
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FIG. 1: (color online) (a) Meν
T distribution after preselec-

tion, (b)
∑

MLQ for Meν
T > 110 GeV, (c) the ST for

Meν
T > 110 GeV and

∑
MLQ > 350 GeV, and (d) the ST

distribution after the final selection, which is used to set an
upper limit on the LQ pair production cross section.

• Cut based analysis

• Preselection:

- 1 electron, pT > 15 GeV, 

- MET > 15 GeV

- ≥2 jets, pT > 20 GeV,

- Multijet removal:  MET/50 + mT(e, MET)/70 ≥ 1

mLQ=240 GeV Data Total Bkgd. Signal

Preselection 65992 65703 ± 5958 50 ± 7

MTeν>110 GeV 990 986 ± 82 34 ± 5
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TABLE II: Event counts and the predicted number of signal
events for MLQ = 260 GeV and β = 0.5 after each selection
requirement.

Data Total background Signal
Preselection 65992 65703± 5958 50± 7

Meν
T > 110 GeV 990 986± 82 34± 5∑

MLQ > 350 GeV 64 55± 4 27± 4
ST > 450 GeV 15 15± 1 24± 3

At this stage we observe 65992 data events, while we
expect 65703±61(stat)±5958(sys) from SM background
and 50.4±0.4(stat)±6.8(sys) events from scalar LQ pro-
duction for MLQ = 260 GeV and β = 0.5. Figure 1(a)
shows the M eν

T distribution for the data and SM pro-
cesses. Data are consistent with the SM predictions. To
reduce the dominant SM V+jets background, we require
M eν

T ≥ 110 GeV. The pairing algorithm described previ-
ously allows us to reconstruct MLQ. Since the longitu-
dinal component of the neutrino momentum, pz, is not
measurable, we reconstruct only the visible mass of the
decay LQ → νeq′ as MLQ = M(jet + νvis), where the
four vector of νvis is given as (/px, /py, 0, /ET ). Figure 1(b)
shows the distribution of the sum

∑

MLQ of the invariant
mass of the decay LQ → eq and the visible mass of the
decay LQ → νeq′ after the requirement M eν

T ≥ 110 GeV.
We then use

∑

MLQ to reduce SM backgrounds, fur-
ther requiring that

∑

MLQ > 350 GeV. Finally, we re-
quire that the scalar sum of the pT of the lepton, the
/ET , and the two jets, ST , shown in Fig. 1(c) after all
selections, be greater than 450 GeV. Selection criteria
are optimized to achieve the best expected sensitivity for
MLQ = 260 GeV. This yields 15 observed events for an
expected background of 14.8±0.6(stat)±1.1(sys) events.
The event counts after each requirement are shown in Ta-
ble II.

Systematic uncertainties which affect only the nor-
malization of the background and the signal efficiency
include uncertainties on cross sections of signal (10%)
and background (6%− 10%) processes, normalization of
the MJ background (20%), integrated luminosity (6.1%),
and lepton trigger and identification (4%). Uncertain-
ties which also affect the differential distribution of ST

which is the quantity used to set the limits on LQ are due
to the jet energy resolution and scale, jet identification
efficiency, parton distribution functions, and the model-
ing of the jet pT distribution of the dominant W+jets
background. Their impacts are evaluated by repeating
the analysis with values varied by ±1 standard deviation
(SD). For the uncertainty on the jet pT modeling, the im-
pact is estimated by comparing the jet pT distributions
between alpgen and data unfolded to particle level from
the recent D0 measurement [32]. The ratio is applied as
weight to the W+jets jet pT distribution, and the new
distribution is taken as ±1 SD band.

The distribution of the ST after all selection require-
ments, shown in Fig. 1(d), is used as a discriminant to
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FIG. 1: (color online) (a) Meν
T distribution after preselec-

tion, (b)
∑

MLQ for Meν
T > 110 GeV, (c) the ST for

Meν
T > 110 GeV and

∑
MLQ > 350 GeV, and (d) the ST

distribution after the final selection, which is used to set an
upper limit on the LQ pair production cross section.

Signal Selection

9

• Cut based analysis

• Preselection:

- 1 electron, pT > 15 GeV, 

- MET > 15 GeV

- ≥2 jets, pT > 20 GeV,

- Multijet removal:  MET/50 + mT(e, MET)/70 ≥ 1

mLQ=240 GeV Data Total Bkgd. Signal

Preselection 65992 65703 ± 5958 50 ± 7

MTeν>110 GeV 990 986 ± 82 34 ± 5

ΣMLQ>350 GeV 64 55 ± 4 27 ± 4
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Signal Selection

10

5

TABLE II: Event counts and the predicted number of signal
events for MLQ = 260 GeV and β = 0.5 after each selection
requirement.

Data Total background Signal
Preselection 65992 65703± 5958 50± 7

Meν
T > 110 GeV 990 986± 82 34± 5∑

MLQ > 350 GeV 64 55± 4 27± 4
ST > 450 GeV 15 15± 1 24± 3

At this stage we observe 65992 data events, while we
expect 65703±61(stat)±5958(sys) from SM background
and 50.4±0.4(stat)±6.8(sys) events from scalar LQ pro-
duction for MLQ = 260 GeV and β = 0.5. Figure 1(a)
shows the M eν

T distribution for the data and SM pro-
cesses. Data are consistent with the SM predictions. To
reduce the dominant SM V+jets background, we require
M eν

T ≥ 110 GeV. The pairing algorithm described previ-
ously allows us to reconstruct MLQ. Since the longitu-
dinal component of the neutrino momentum, pz, is not
measurable, we reconstruct only the visible mass of the
decay LQ → νeq′ as MLQ = M(jet + νvis), where the
four vector of νvis is given as (/px, /py, 0, /ET ). Figure 1(b)
shows the distribution of the sum

∑

MLQ of the invariant
mass of the decay LQ → eq and the visible mass of the
decay LQ → νeq′ after the requirement M eν

T ≥ 110 GeV.
We then use

∑

MLQ to reduce SM backgrounds, fur-
ther requiring that

∑

MLQ > 350 GeV. Finally, we re-
quire that the scalar sum of the pT of the lepton, the
/ET , and the two jets, ST , shown in Fig. 1(c) after all
selections, be greater than 450 GeV. Selection criteria
are optimized to achieve the best expected sensitivity for
MLQ = 260 GeV. This yields 15 observed events for an
expected background of 14.8±0.6(stat)±1.1(sys) events.
The event counts after each requirement are shown in Ta-
ble II.

Systematic uncertainties which affect only the nor-
malization of the background and the signal efficiency
include uncertainties on cross sections of signal (10%)
and background (6%− 10%) processes, normalization of
the MJ background (20%), integrated luminosity (6.1%),
and lepton trigger and identification (4%). Uncertain-
ties which also affect the differential distribution of ST

which is the quantity used to set the limits on LQ are due
to the jet energy resolution and scale, jet identification
efficiency, parton distribution functions, and the model-
ing of the jet pT distribution of the dominant W+jets
background. Their impacts are evaluated by repeating
the analysis with values varied by ±1 standard deviation
(SD). For the uncertainty on the jet pT modeling, the im-
pact is estimated by comparing the jet pT distributions
between alpgen and data unfolded to particle level from
the recent D0 measurement [32]. The ratio is applied as
weight to the W+jets jet pT distribution, and the new
distribution is taken as ±1 SD band.

The distribution of the ST after all selection require-
ments, shown in Fig. 1(d), is used as a discriminant to
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FIG. 1: (color online) (a) Meν
T distribution after preselec-

tion, (b)
∑

MLQ for Meν
T > 110 GeV, (c) the ST for

Meν
T > 110 GeV and

∑
MLQ > 350 GeV, and (d) the ST

distribution after the final selection, which is used to set an
upper limit on the LQ pair production cross section.

• Cut based analysis

• Preselection:

- 1 electron, pT > 15 GeV, 

- MET > 15 GeV

- ≥2 jets, pT > 20 GeV,

- Multijet removal:  MET/50 + mT(e, MET)/70 ≥ 1

mLQ=240 GeV Data Total Bkgd. Signal

Preselection 65992 65703 ± 5958 50 ± 7

MTeν>110 GeV 990 986 ± 82 34 ± 5

ΣMLQ>350 GeV 64 55 ± 4 27 ± 4

ST>450 GeV 15 15 ± 1 24 ± 3
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Systematics

• Normalization of  signal and and background (6%-10%) 
processes, 

• MJ background (20%), 

• Integrated luminosity (6.1%), 

• Lepton trigger and identification (4%)

• Jet Energy Scale, Resolution and Identification (4-7%)

11
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Results

12

• Using ST with final selection to search for LQ

• No excess in data ⇒ limits set

- For β=0.5 LQ with mass below 326 GeV is excluded

6

set an upper limit on the LQ pair production cross sec-
tion in the eqνeq′ channel. For each generated MLQ,
the limit is calculated at the 95% C.L. using the semi-
frequentist CLs method based on a Poisson log-likelihood
test statistic [33]. Signal and background normalizations
and shape variations due to systematic uncertainties are
incorporated assuming Gaussian priors. The best fit to
the background distributions is evaluated by minimizing
a profile likelihood function with respect to the observed
data and various sources of uncertainty, maintaining all
correlations among systematic uncertainties [34]. Limits
on the cross section multiplied by the branching frac-
tion and the theoretical LQ cross section for β = 0.5 are
shown in Fig. 2. The limit on the LQ mass as a func-
tion of β is determined as shown in Fig. 3, and compared
to the previous D0 [10], CMS [11, 12], and ATLAS [13]
results.
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calculated at the 95% C.L. on the LQ cross section as a func-
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prediction for β = 0.5. The NLO cross section is shown for dif-
ferent choices of the renormalization and factorization scales,
µ = MLQ, µ = 0.5×MLQ, and µ = 2×MLQ.

In summary, we have searched for scalar leptoquark
pair production in the eqνeq′ final state in 5.4 fb−1 of
integrated luminosity of pp̄ collisions at

√
s = 1.96 TeV.

In the absence of a signal, we exclude the production of
first generation leptoquarks with MLQ < 326 GeV for
β = 0.5 at the 95% C.L.
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Summary

• Tevatron delivered 12fb-1 of  data

• Results on the search for first generation scalar LQ pair 
production in eνjj final state

• Scalar LQ with mass below 326 GeV for β=0.5 excluded

• DØ/Tevatron had rich program searching for New Physics

• Strong limits set, no discovery

• Torch of  NP (Exotics, Susy) has been handed over to the 
LHC, hope for exciting news soon 
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Existing Searches

• Previous published DØ result puts lower limit on a scalar LQ 
mass at 264 GeV in ejνj channel, and 284 GeV when combined 
with ejej and νjνj (β = 0.5)

15

• Recent ATLAS and CMS dominating all searches
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Figure 2: (Left) The expected and observed upper limits at 95% CL on the LQ pair-production

cross section times 2β(1 − β) as functions of the first generation LQ mass. The shaded region

is excluded by the current D0 limit for β = 0.5 in the eνjj channel only. (Right) Observed

exclusion limits at 95% CL on the first generation LQ hypothesis in the β versus LQ mass plane

using the central value of signal cross section, for the individual eejj and eνjj channels, and their

combination. The combined expected limit is also shown. The shaded region is excluded by

the current D0 limits, which combine results of eejj, eνjj, and ννjj decay modes.

proach used to set the individual limits is then applied to the likelihood product to set the

combined limit. While integrating over nuisance parameters, the systematic uncertainties on

signal efficiency and background are assumed to be fully correlated and the largest uncertainty

amongst the two channels is used. Figure 2 (right) shows the exclusion limits at 95% CL on the

first generation leptoquark hypothesis in the β versus LQ mass plane, using the central value

of the signal cross section, for the individual dielectron and electron+neutrino channels, and

their combination.

8 Summary
A search for pair-production of first generation scalar leptoquarks in events with an electron,

missing transverse energy, and at least two jets has been presented. The contribution of the

main backgrounds has been determined by MC studies and the uncertainty estimated by a

comparison with the data. The number of observed events passing a selection optimized for

exclusion of the LQ hypothesis is in good agreement with the predictions for standard model

background processes. A Bayesian approach that includes treatment of the systematic uncer-

tainties as nuisance parameters has been used to set upper limits on the LQ cross section. Prior

CMS results in the dielectron channel are combined with this electron+neutrino search. A 95%

confidence level combined lower limit is set on the mass of a first generation scalar leptoquark

at 340 GeV for β = 0.5. These results represent the most stringent direct limits to date for values

of β greater than 0.05.


