Recent results of the atmospheric v analysis in SK

Yoshinari Hayato (Kamioka obs., ICRR, Univ. of Tokyo) for the Super-Kamiokande collaboration

- 1. Introduction
- 2. Three flavor neutrino oscillation analysis using SK I~IV data
- 3. v_{τ} appearance search using SK I~III data

Super-Kamiokande collaboration

- Kamioka Observatory, ICRR, University of Tokyo
- Research Center for Cosmic Neutrinos (RCCN),
 ICRR, University of Tokyo
- Gifu University
- Kobe University
- High Energy Accelerator Research Organization (KEK)
- Kavli Institute for the Physics and Mathematics of the Universe (IPMU), Todai Institutes for Advanced Study (TODIAS),
 The University of Tokyo
- University of Kyoto
- Miyagi University of Education
- Nagoya University
- Okayama University
- Osaka University
- Tokai University
- Junior College, Fukuoka Institute of Technology
- Shizuoka University of Welfare
- University of Tokyo
- Tokai University

- Boston University
- University of British Columbia
- University of California, Irvine
- California State University
- Chonnam National University
- Duke University
- University of Hawaii
- University Autonoma Madrid
- University of Regina
- Stony Brook University
- Seoul National University
- Sungkyunkwan University
- University of Toronto
- TRIUMF
- Tsinghua University
- University of Warsaw
- University of Washington

Super-Kamiokande detector

50000 tons Ring imaging Water Cherenkov detector

Operation started in Apr. 1996.

Super-Kamiokande detector

History of the SK detector

Characteristics of atmospheric neutrino

Atmospheric v energy spectrum

- Broad energy spectrum
- $v_{\mu}/v_{e} \sim 2$ (< ~ 1 GeV)
- $v_{\mu}^{'}/v_{e} > 2 \ (> \sim 1 \text{ GeV})$

Characteristics of atmospheric neutrino

- Neutrino oscillation base line from ~ 10 km to 13,000 km
- Zenith angle corresponds to travel length of neutrinos.

Neutrino oscillation and parameters

PMNS Matrix $(U_{\alpha i})$

Finally, θ_{13} was confirmed

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$
 to have non-zero value.
$$s_{ij} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (Atm. + Accl.) (T2K + Reactor) (Solar + Reactor)
$$\sin^2 2\theta_{23} \sim 1 (>0.9) \sin^2 2\theta_{13} \sim 0.1 \sin^2 \theta_{12} \sim 0.3$$

$$(0.099 \pm 0.014)$$

Remaining questions

- 1) $\theta_{23} = 45^{\circ} \text{ or } < 45^{\circ} \text{ or } > 45^{\circ}$
- 2) CP violated or not (δ = 0 or not)
- 3) Mass hierarchy $\Delta m_{32} > 0$ or < 0

Neutrino oscillation probability ~ ν_{μ} to ν_{e} oscillation

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \boxed{4C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \sin^{2}\Delta_{31}} \qquad \theta_{13} \text{ Leading term} \\ +8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23}) \cdot \cos\Delta_{32} \left[\sin\Delta_{31} \cdot \sin\Delta_{21} \right] \\ -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23} \sin\delta \left[\cdot \sin\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \right] \right] \quad \text{CPV} \\ +4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta) \cdot \sin^{2}\Delta_{21} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{a}{4E_{\nu}}(1 - 2S_{13}^{2}) \cdot \cos\Delta_{32} \left[\sin\Delta_{31} \right] \\ +8C_{13}^{2}S_{12}^{2}S_{23}^{2} \frac{a}{\Delta m_{31}^{2}}(1 - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31}, \qquad \Delta_{ij} \equiv \Delta m_{ij}^{2}L/4E_{\nu} \\ \text{For anti neutrinos,} \qquad \qquad \alpha \rightarrow -a, \ \delta \rightarrow -\delta$$

Now, θ_{13} is known to be (quite) large.

There are chances to observe the contributions from *mass hierarchy* and $CPV(\delta)!$

Neutrino oscillation studies using atmospheric v

High statistics atmospheric neutrino data

- ~ Possibility in observing small distortion in v_e
- Matter effect ~ from mass hierarchy Possible v_e enhancement in several GeV passed through the earth core
- ~ from θ_{23} octant degeneracy Solar term

Possible v_e enhancement

in sub-GeV

Interference

CP phase could be studied.

Difference in # of electron events:

$$\Delta_{\theta} \equiv \frac{N_{\theta}}{N_{\theta}^{0}} \cong \Delta_{1}(\theta_{13})$$

$$+ \Delta_{2}(\Delta m_{12}^{2})$$

$$+ \Delta_{3}(\theta_{13}, \Delta m_{12}^{2}, \underline{\delta})$$

$$+ Matter effect$$

$$- Solar term$$

$$+ \Delta_{3}(\theta_{13}, \Delta m_{12}^{2}, \underline{\delta})$$

$$- Interference$$

Updates of the atmospheric v oscillation analysis in SK

First time to include SK4 data

in the atmospheric neutrino oscillation analyses.

```
Increased statistics ( 1.4 times larger stat. )

Live time 3903 days ( 240 kt-yr )

( incl. 1096.7 days of SK-IV )

Previous 2806 days

SK-I + II + III ( 1489.2 + 798.6 + 518.1 days )
```

- Use the latest atmospheric v flux
 (M. Honda et al., PRD 83, 123001)
- Improvements in neutrino interaction code (NEUT) (especially handling of pion scatterings)
- New v_e / $\overline{v_e}$ separation in 3 flavor neutrino oscillation analysis

New atmospheric neutrino flux calculation (HKKM '11) DPMJET-III → PHITS

Better agreements in *low energy* μ *below* 1GeV/c

measured with balloon exp.

E_√(GeV)

Three flavor oscillation analysis using atmospheric ν

 v_e / \overline{v}_e difference is expected to be visible

in *a few* ~ 10 GeV region

in SK

→ Dominant interaction : Deep inelastic scattering

Use cross-section difference (energy transfer dependence) between v and \overline{v} .

Observables	v _e CC	$\bar{\nu_{\rm e}}$ CC
Energy fraction of	Smaller	Larger
the most energetic ring		
Number of rings	Maria	Гонгон
I wantber of fillys	More	Fewer
Transverse momentum	Larger	Smaller

Purity of selected samples

59%

32%

Three flavor oscillation analysis using atmospheric $\boldsymbol{\nu}$

in SK SK I~IV zenith angle distributions *fixed reactor θ_{13} Sub-GeV elike Sub-GeV μ like Sub-GeV μ like Multi-GeV 1-ring Multi-GeV 0 dcye anti-v_elike 1-ring valike -0.5 0 Multi-GeV 1-ring Multi-GeV Multi-GeV multi-ring multi-ring μ like multi-ring velike anti-velike $\Psi(v_a)/\Psi_0(v_a)$ 400 **1.5** 1.4 300 -0.2 1.3 1.2 -0.4 1.1 nonshowering 0.9 8.0 Data 0.7 -0.8 **Normal hierarchy** 0.6 **Inverted hierarchy** 10 No oscillation Ev (GeV)

Three flavor oscillation analysis using atmospheric v in SK

Normal hierarchy

Inverted hierarchy

Best fit 90% C.L. Δm ² ₃₂ 2.66 x 10 ⁻³ 2.06 x 10 ⁻³ - 3.04 x 10 ⁻³ eV ² $ \sin^2 \theta_{23} = 0.002 $ 0.003 0.004 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004						
Sin ² θ ₂₃ 0.425 0.391 - 0.619 Sin ² θ ₂₃ 0.575 0.393 - 0.630 0.004 0.003 0.004 0.002 0.002 0.002 0.002 0.002 0.003 0.004 0.001		Best fit	90% C.L		Best fit	90% C.L.
0.004 0.004 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.004 0.004 0.001 0	Δm_{32}^2	2.66 x 10 ⁻³	2.06 x 10 ⁻³ - 3.04 x 10 ⁻³ eV ²	Δm^2_{32}	2.66 x 10 ⁻³	2.14 x 10 ⁻³ - 3.04 x 10 ⁻³ eV ²
0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.003 0.004 0.004 0.004 0.005 0.005 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.008 0.009, NH) 0.001	$\sin^2\!\theta_{23}$	0.425	0.391 - 0.619	$\sin^2\! heta_{23}$	0.575	0.393 - 0.630
$v^2 = 556.7 / 477 dof$ $v^2 = 555.5 / 477 dof$	$^{\circ}$	T2K 2v MINOS 2v SK 1+2+3+4 SK 1+2+3+4 SK 1+2+3+4	Zenith $2v$ Zenith $3v$ ($\sin^2 2\theta_{13} = 0.099$, NH) $0.9 \qquad 0.95 \qquad 1$ $\sin^2 2 \theta_{23}$	$^{\circ}$	T2K 2v MINOS 2v SK 1+2+3+4 L/l SK 1+2+3+4 Ze SK 1+2+3+4 Ze 0.85	nith $2v$ nith $3v$ ($\sin^2 2\theta_{13} = 0.099$, IH)

Three flavor oscillation analysis using atmospheric v in SK

Three flavor oscillation analysis using atmospheric v

 No significant electron appearance observed in atmospheric v data

$$\chi^2(\sin^2\theta_{13} = 0) - \chi^2_{min} = 1.1 \text{ (NH)}, 1.2 \text{ (IH)}$$

Search for the signature of v_{τ} in SK ~ appearance ~ Statistically, we can separate tau-like events using the event topology.

SK is not a suitable detector to identify v_{τ} event-by-event.

- ~ Search for hadronic decay of τ . Isotropic ring distributions compared to ν_μ/ν_e CC interactions
 - Select energetic Fully Contained multi-ring events (total visible energy > 1.33 GeV)
 - Most energetic ring: e-like

Use neural net for further separation (7 parameters)

Study of background events

Use downward going events

 (oscillation probability is small)

Search for the signature of v_{τ} in SK ~ appearance ~

Used data set

(arXiv:1206.0328 [hep-ex], submitted to PRL)

SK-I: 1489 Days, SK-II: 799 Days and SK-III: 518 Days

(previous analysis: Only SK-I = statistics almost doubled)

$$Data = \alpha \times bkg + \beta \times signal$$

$$\beta = 1.42 \pm 0.35_{(stat)}^{+0.14}_{-0.12(sys)}$$

Estimated # of v_{τ} events

$$170.8 \pm 44.3_{(stat)}^{+17.8}_{-15.2(sys)}$$

3.8 σ deviation from "no v_{τ} appearance"

Summary Three flavor oscillation analysis and v_{τ} appearance analysis in SK

Δm^2_{32}	$2.66 \pm {}_{0.40}^{0.15} \times 10^{-3} \text{ eV}^2$ (NH, 1 σ)				
	$2.66 \pm {}_{0.23}^{0.17} \times 10^{-3} \text{ eV}^2$ (IH, 1σ)				
$\sin^2\theta_{23}$	0.391 ~ 0.619 (NH, 90% C.L.)				
	0.393 ~ 0.630 (IH, 90% C.L.)				
θ_{13}	No significant appearance of v_e SK alone, $\Delta \chi^2 \sim 1$				
СРδ	No constraint at 90% C.L.				
Mass hierarchy	No strong conclusion				
	$(\chi^2(NH)-\chi^2(IH) \sim 1.2)$				
τ appearance	3.8 σ deviation				
	from "no v_{τ} appearance"				

More statistics and further understanding of the data is necessary to solve the remaining questions.