#### Studies of $\psi(2S)$ and $\psi(3770)$ at KEDR

Korneliy Todyshev On behalf of the KEDR Collaboration

Budker Institute of Nuclear Physics, Novosibirsk

#### Outline

- VEPP-4M collider and KEDR detector
- Measurement of main parameters of the  $\psi(2S)$  resonance
- Measurement of  $\psi(3770)$  parameters
- Conclusion

#### VEPP-4M and KEDR



## Measurement of $\psi(2S)$ parameters



Scans 2004, 2006  $\int \mathcal{L} dt \simeq 0.6 \text{ pb}^{-1}$ 

 $M = 3686.114 \pm 0.007(stat.) \pm 0.011(syst.) \stackrel{+0.002}{_{-0.012}}(model) \text{ MeV}$ 

The third uncertainty quoted is an estimate of the model dependence of the result due to assumptions on the interference effects.

RICHEP 2012

## $\Gamma_{ee} imes \mathcal{B}_{hadrons}$ measurement



#### $\psi \rightarrow \mathit{hadrons} \ \mathbf{MC} \ \mathbf{tuning}$

- select a critical option or parameter and modify it using an educated guess
- eslect a complementary parameter and modify it to find the value at which the observed charged multiplicity agrees with experiment
- calculate the detection efficiency and compare it with previous results to estimate the uncertainty

#### The main systematic uncertainties (simplified list)

| Absolute luminosity measurement | $\sim 1.3\%$ |
|---------------------------------|--------------|
| $\psi(2S)$ decay simulation     | $\sim 1.0\%$ |
| Detector response               | $\sim 0.5\%$ |
| Accelerator related effects     | $\sim 0.3\%$ |
| Other uncertainties             | $\sim 0.3\%$ |

 $\Gamma_{ee} \times \mathcal{B}_{hadrons} = 2.233 {\pm} 0.015 {\pm} 0.037 {\pm} 0.020 \, \text{keV}$ 



### **Results for** $\psi(2S)$



Using  $\mathcal{B}^{PDG}_{hadrons} = 0.9785 \pm 0.0013$  and  $\mathcal{B}^{PDG}_{ee} = 0.00772 \pm 0.00017$ 

 $\Gamma_{ee} = 2.282 \pm 0.015 \pm 0.038 \pm 0.021 \, \text{keV}$ 

 $\Gamma = 296 \pm 2 \pm 8 \pm 3 \text{ keV}$ 

Detailed analysis and  $\psi(2S)$  results Phys. Lett. B 711 (2012), 280-291

RICHEP 2012

Studies of  $\psi(\mathbf{2S})$  and  $\psi(\mathbf{3770})$  at KEDR

Korneliy Todyshev

#### Incomplete compilation of results on $\psi(3770)$ mass

| Analysis                      | <i>M</i> , MeV           | Comments                                          |
|-------------------------------|--------------------------|---------------------------------------------------|
| MARK-I                        | 3774.1 ± 3               | $e^+e^- ightarrow$ hadrons $^{(a)}$               |
| DELCO                         | 3772.1 ± 2               | $e^+e^- ightarrow$ hadrons $^{(a)}$               |
| MARK-II                       | 3766.1 ± 2               | $e^+e^- ightarrow$ hadrons $^{(a)}$               |
| BELLE (2004)                  | $3778.4 \pm 3.0 \pm 1.3$ | $B  ightarrow D^0 \overline{D}{}^0 K^{+ \ (b)}$   |
| BES-II (2006)                 | $3772.4 \pm 0.4 \pm 0.3$ | $e^+e^- ightarrow$ hadrons $^{(a)}$               |
| BES-II (2008)                 | 3772.0 ± 1.9             | $e^+e^- ightarrow$ hadrons                        |
| BELLE (2008)                  | $3776.0 \pm 5.0 \pm 4.0$ | $B  ightarrow D^0 \overline{D}{}^0 K^+$           |
| BABAR (2008)                  | $3775.5 \pm 2.4 \pm 0.5$ | $B  ightarrow D ar{D} K$                          |
| BABAR (2007)                  | $3778.8 \pm 1.9 \pm 0.9$ | $e^+e^-  ightarrow D\overline{D}\gamma^{(c)}$     |
| Hai-Bo Li <i>et al.</i> 2009, | $3776.0 \pm 1.0 \pm ?$   | $e^+e^-  ightarrow D\overline{D} +$               |
| data of BES+BELLE             |                          | $e^+e^-  ightarrow D\overline{D}\gamma^{(c,d,e)}$ |
| YuJi. Zhang et al. 2009,      | $3774.0 \pm 1.0 \pm ?$   | $e^+e^-  ightarrow D\overline{D}\gamma$           |
| BES data                      |                          | $e^+e^-  ightarrow D\overline{D}^{(c,d,e)}$       |

- $^{(a)}$  omitted in the latest PDG edition (2010)
- $^{(b)}$  the result on  $\mathcal{B}(B \to D^0 \overline{D}{}^0 K^+)$  is superseded by BELLE (2008)
- $^{(c)}-$  interference between resonant and nonresonant  $D\overline{D}$  production is taken into account
- $^{(d)}-$  the authors analyze the published data, systematic uncertainties are not evaluated
- $^{(e)}$  electron width of  $\psi$ (3770) is fixed at the world average value
  - causing a negative bias in the mass



Studies of  $\psi(\mathbf{2S})$  and  $\psi(\mathbf{3770})$  at KEDR

### Description of the $\psi(3770)$ resonance lineshape

The experiments to study inclusive cross section:

• MARK-I 1977, DELCO 1978, MARK-II 1980

 $\psi({\rm 3770})\,$  shape is non-relativistic p-wave Breit-Wigner with energy-dependent total width.

Nonresonant  $D\overline{D}$  cross section  $\sigma_{D\overline{D}} \propto q^3$  (point-like particles)

- BES2 2006 radiative correction added, nonstandard treatment of vacuum polarization
- BES2 2008a combined fit with higher mass resonances
- **BES2 2008b** double resonance  $\psi(3770)$  lineshape

#### One can see the following problems

- The resonance-continuum interference was ignored
- <sup>(2)</sup> Analyses assumed the simplest shape of nonresonant  $D\overline{D}$  cross section similar to that for point-like pseudoscalars in QED

### Conditions of analysis near of $\psi(3770)$ region

- Data analysis takes into account interference between the resonant and nonresonant  $D\overline{D}$  production.
- The nonresonant form factor can be obtained with an application of the Vector Dominance Model (VDM) to charm production. In this work we employ VDM in a simplified form where

 $F_{D\overline{D}}^{nonresonant}(W) = F_{D\overline{D}}^{\psi(2S)}(W) + F_0$ 

where  $F_{D\overline{D}}^{\psi(2S)}(W)$  is the main part of the form factor corresponding to the  $\psi(2S)$  and  $F_0$  is a real constant representing the contributions of the  $\psi(4040)$  and higher  $\psi$ 's.

• To evaluate the model dependence of the  $\psi(3770)$  parameters we tried a few nonresonant form factor parameterizations, which do not assume VDM.



## Measurement of $\psi(3770)$ parameters



Scans 2004, 2006  $\int \mathcal{L} dt \sim 1.9 \text{ pb}^{-1}$ . The observed multihadron cross section as a function of the c.m. energy for the three scans. The curves are the results of the vector dominance fit.

Excess of the multihadron cross section in the  $\psi(3770)$  region. The curves show relevant parts of the fits. All data are corrected for the detection efficiency which is different in the three scans.

 $M = 3779.2 \stackrel{+1.8}{_{-1.7}} \stackrel{+0.5}{_{-0.7}} \stackrel{+0.3}{_{-0.3}} \text{MeV}$ 

CICHEP 2012

24.9 <sup>+4.6</sup> <sub>-4.0</sub> <sup>+0.5</sup> <sub>-0.6</sub> <sup>+0.2</sup> MeV Studies of  $\psi(2S)$  and  $\psi(3770)$  at KEDR

Korneliv Todyshev

## Ambiguity of $\psi(3770)$ resonance parameters

 $\delta \sigma^{RC}$ , nb



Excess of the multihadron cross section in the  $\psi(3770)$  region. Solid and short-dashed curves correspond to two VDM solutions. Resonant and non-resonant parts are presented separately.

(1)  $\Gamma_{ee} = 154 \frac{+79}{-58} \frac{+17}{-9} \frac{+13}{-25} \text{ eV}, \ \sigma_{D\overline{D}}^{NR} = 1.4 \pm 0.7 \frac{+0.1}{-0.2} \frac{+0.3}{-0.2} \text{ nb}$ 

#### (2) $\Gamma_{ee} = 414 \frac{+72}{-80} \frac{+24}{-26} \frac{+90}{-10} \text{ eV}, \ \sigma_{D\overline{D}}^{NR} = 1.3 \pm 0.7 \frac{+0.1}{-0.2} \frac{+0.6}{-0.2} \text{ nb}$

The phase shifts of the  $\psi(3770)$  amplitude relative to the negative nonresonant amplitude are  $171 \pm 17$  and  $240 \pm 9$  degrees for solutions (1) and (2), respectively.

Detailed analysis published in Phys. Lett. B 711 (2012), 292-300



Studies of  $\psi(\mathbf{2S})$  and  $\psi(\mathbf{3770})$  at KEDR

Korneliy Todyshev

#### Conclusion

#### Analysis of the $\psi(2S)$ resonance

A high-precision determination of the main parameters of the  $\psi(2S)$  resonance has been performed.

 $M = 3686.114 \pm 0.007 \pm 0.011 \stackrel{+0.002}{-0.012}$  MeV

$$\Gamma_{ee} imes {\cal B}_{hadrons} = 2.233 \pm 0.015 \pm 0.037 \pm 0.020$$
 keV

Analysis of the  $\psi(3770)$  resonance

Our results for the mass and total width of  $\psi(3770)$  are

$$\begin{split} M &= 3779.2 \stackrel{+1.8}{_{-1.7}} \stackrel{+0.5}{_{-0.7}} \stackrel{+0.3}{_{-0.3}} \text{ MeV}, \\ \Gamma &= 24.9 \stackrel{+4.6}{_{-4.0}} \stackrel{+0.5}{_{-0.6}} \stackrel{+0.2}{_{-0.9}} \text{ MeV}. \end{split}$$

The result on the  $\psi(3770)$  mass agrees with that by BaBar also taking into account interference. For the electron partial width two possible solutions have been found:

(1) 
$$\Gamma_{ee} = 154 {}^{+79}_{-58} {}^{+17}_{-9} {}^{+13}_{-25} \text{ eV}, \ \sigma_{DD}^{NR} = 1.4 \pm 0.7 {}^{+0.1}_{-0.2} {}^{+0.3}_{-0.2} \text{ nb},$$

(2) 
$$\Gamma_{ee} = 414 {}^{+72}_{-80} {}^{+24}_{-26} {}^{+90}_{-10} \text{ eV}, \ \sigma_{D\overline{D}}^{NR} = 1.3 \pm 0.7 {}^{+0.1}_{-0.2} {}^{+0.0}_{-0.2} \text{ nb}.$$

Our statistics are insufficient to prefer one solution to another. The solution (2) mitigates the problem of non- $D\overline{D}$  decays but is disfavored by potential models.

KICHEP 2012

## BACKUP SLIDES



The dominating systematic uncertainties in the  $\Gamma_{ee} \times \mathcal{B}$ , product for three scans (%). The correlated parts of the uncertainties are also presented. The inaccuracy of about 0.9% due to possible interference phase correlation is not included.

| Source                           | Scan 1 | Scan 2 | Scan 3 | Common <sub>12</sub> | Common <sub>123</sub> |
|----------------------------------|--------|--------|--------|----------------------|-----------------------|
| Absolute luminosity measurement  | 1.6    | 1.7    | 1.2    | 1.6                  | 0.5                   |
| $\psi(2S)$ decay simulation      | 1.0    | 1.0    | 1.1    | 1.0                  | 1.0                   |
| Detector response                |        |        |        |                      |                       |
| Trigger efficiency               | 0.2    | 0.2    | 0.2    | 0.2                  | 0.2                   |
| Nuclear interaction              | 0.2    | 0.2    | 0.3    | 0.2                  | 0.2                   |
| Cross talks in VD                | 0.1    | 0.17   | 0.1    | 0.1                  | 0.1                   |
| Variation of cuts                | 0.5    | 0.3    | 0.6    | 0.3                  | 0.3                   |
| Accelerator related effects      |        |        |        |                      |                       |
| Beam energy determination        | 0.15   | 0.18   | 0.6    | 0.15                 | 0.15                  |
| Non-Gaussian energy distribution | 0.2    | 0.2    | 0.2    | 0.2                  | 0.2                   |
| Residual background              | <0.1   | <0.1   | <0.1   | <0.1                 | <0.1                  |
| Other uncertainties              | 0.3    | 0.3    | 0.3    | 0.3                  | 0.3                   |
| Sum in quadrature                | ≈2.0   | ≈2.1   | ≈1.9   | ≈2.0                 | ≈1.3                  |



# The main sources of systematic uncertainty in $\psi(3770)$ parameters

Systematic uncertainties on the  $\psi(3770)$  mass, total width and electron partial width. For the latter the uncertainties of two solutions are presented where different. The uncertainty on the nonresonant  $D\overline{D}$  cross section is also presented.

| Source                                                | M[MeV]         | Γ[MeV]         | Γ <sub>ee</sub> [%]                 | $\sigma_{DD}^{NR}[\%]$ |  |  |  |
|-------------------------------------------------------|----------------|----------------|-------------------------------------|------------------------|--|--|--|
| Theoretical uncertainties and external data precision |                |                |                                     |                        |  |  |  |
| $\mathcal{B}_{nD\overline{D}}$                        | +0.0<br>-0.5   | +0.0<br>-0.2   | $\frac{+8.8}{-0} / \frac{+0}{-2.3}$ | +0<br>-12.             |  |  |  |
| $R_0$ value in $\Gamma(W)$                            | 0.3            | 0.3            | 2.                                  | 1.5                    |  |  |  |
| Γροπο/Γρ+ρ-                                           | 0.1            | 0.1            | 0.4                                 | 0.8                    |  |  |  |
| $D, \overline{D}$ masses                              | 0.06           | 0.04           | 0.3                                 | 0.5                    |  |  |  |
| $D\overline{D}\pi$ cross section                      | 0.15           | 0.05           | 1.                                  | 2.                     |  |  |  |
| Detector and accelerator related uncertainties        |                |                |                                     |                        |  |  |  |
| Det. efficiency variation                             | 0.03           | 0.04           | 2.4                                 | 5.                     |  |  |  |
| Hadronic event selection                              | 0.3            | 0.3            | 3.                                  | 5.                     |  |  |  |
| Residual background                                   | 0.06           | 0.3            | 2.9                                 | 3.                     |  |  |  |
| Luminosity measurement                                | 0.1            | 0.1            | 2.                                  | 2.                     |  |  |  |
| Beam energy                                           | 0.03           | -              | _                                   | -                      |  |  |  |
| Sum in quadrature                                     | +0.48<br>-0.69 | +0.54<br>-0.58 | +10.5/+5.7<br>-5.7/-6.1             | +8.<br>-14.            |  |  |  |



## $\psi(3770)$ analysis

Detection efficiency for the processes of interest and its variation in the experiment energy range  $\Delta W \approx 200$  MeV.

| Process              | €2004           | €2006           | $\Delta \epsilon / \epsilon$ , % |
|----------------------|-----------------|-----------------|----------------------------------|
| $D^+D^-$             | $0.75 \pm 0.02$ | $0.84 \pm 0.02$ | $+\textbf{1.0}\pm\textbf{0.3}$   |
| $D^0 \overline{D}^0$ | $0.74 \pm 0.02$ | $0.81 \pm 0.02$ | $+\textbf{1.0}\pm\textbf{0.3}$   |
| ψ(2 <b>S</b> )       | $0.63 \pm 0.01$ | $0.72 \pm 0.01$ | $-0.1\pm0.1$                     |
| $J/\psi$             | $0.50 \pm 0.02$ | $0.60 \pm 0.02$ | $-0.2\pm0.1$                     |
| uds                  | $0.55 \pm 0.02$ | $0.69 \pm 0.02$ | $+2.1\pm0.5$                     |

 $\psi$ (3770) fit results for the vector dominance compared to the ignored-interference case.

| Sol.    | M, MeV                             | Γ, MeV                           | Γ <sub>ee</sub> , eV      | $\phi$ , degrees                   | $\Gamma_{D\overline{D}}^{\psi(2S)}$ , MeV | Fo                   | σ <u>NR</u> , nb               | <b>P</b> (χ <sup>2</sup> ),% |
|---------|------------------------------------|----------------------------------|---------------------------|------------------------------------|-------------------------------------------|----------------------|--------------------------------|------------------------------|
| 1       | 3779.3 <sup>+1.8</sup>             | 25.3 <sup>+4.4</sup><br>-3.9     | $160^{+78}_{-58}$         | $\textbf{170.7} \pm \textbf{16.7}$ | $12.9^{+18.5}_{-11.8}$                    | $-4.8^{+3.0}_{-3.6}$ | $1.83 \pm 0.96$                | 35.7                         |
| 2       | 3779.3 <sup>+1.8</sup><br>-1.6     | 25.3 <sup>+4.6</sup><br>-4.0     | 420 <sup>+72</sup><br>-80 | $\textbf{239.6} \pm \textbf{8.6}$  | $11.5^{+16.5}_{-10.5}$                    | $-4.9^{+3.3}_{-3.7}$ | $1.71 \pm 0.86$                | 35.7                         |
| i.i.    | 3773.3 ± 0.5                       | $23.3^{+2.5}_{-2.2}$             | 249 <sup>+25</sup><br>-22 | -                                  | -                                         | -                    | 0.07 <sup>+0.09</sup><br>-0.07 | 7.5                          |
| PDG2010 | $\textbf{3772.9} \pm \textbf{0.4}$ | $\textbf{27.3} \pm \textbf{1.0}$ | 265 $\pm$ 18              | -                                  | -                                         | -                    | -                              | -                            |



#### $\psi(3770)$ fits results for alternative assumptions on the nonresonant form factor $f_D$ .

The nonresonant part of the form factor can be written as

$$F_{D\overline{D}}^{nonresonant}(W) = \frac{1}{|1 - \Pi_0(W)|} f_D(W)$$
(1)

with  $f_D(W) = 1$  for point-like particles. We used

$$f_{\rm D} = -\frac{\mathcal{E}_{\rm q}}{(1 + a_{\rm q} \, q_{\rm D}^2 + b_{\rm q} \, q_{\rm D}^4)^n} \qquad (n = 0.5, \, 1). \tag{2}$$

The minus sign is chosen to match the  $\psi(2S)$  dominance expectations. Alternatively, the dependence on  $W - m_D$ 

$$f_{D} = -\frac{g_{W}}{1 + a_{W}(W - 2m_{D}) + b_{W}(W - 2m_{D})^{2}}$$
(3)

and combined dependences

$$f_{D} = -\frac{g_{qW}}{(1 + a_{qW} (W - 2m_{D}) + b_{qW} q_{D}^{2})^{n}},$$
(4)

$$f_D = \frac{g_m}{a_m - W} \left( 1 + \frac{i b_m \beta_D^n}{a_m - W} \right) \qquad (n = 0, 1, 3).$$
(5)

| Model     | Mass, total width and $P(\chi^2)$  |                              |                  | Soluti                             | on 1 (small                     | er                                | Solution 2 (larger $\phi$ )        |                                |                                   |
|-----------|------------------------------------|------------------------------|------------------|------------------------------------|---------------------------------|-----------------------------------|------------------------------------|--------------------------------|-----------------------------------|
| Equation  | M, MeV                             | Г, МеV                       | $P(\chi^{2}),\%$ | $\phi$ , degrees                   | Γ <sub>ee</sub> , eV            | σNR<br>DD, nb                     | $\phi$ , degrees                   | Γ <sub>ee</sub> , eV           | σNR<br>DD, nb                     |
| (2) n=1   | 3779.1 <sup>+2.0</sup><br>-1.6     | 24.4 <sup>+5.0</sup><br>-3.6 | 32.7             | $\textbf{167.6} \pm \textbf{16.0}$ | $146^{+66}_{-48}$               | $1.82 \pm 0.76$                   | $243.1 \pm 9.5$                    | 417 <sup>+75</sup><br>-65      | $\textbf{1.76} \pm \textbf{0.73}$ |
| (2) n=0.5 | 3779.0 <sup>+1.7</sup><br>-1.6     | 25.5 <sup>+3.0</sup><br>-3.5 | 33.1             | $\textbf{172.2} \pm \textbf{17.3}$ | 172 <sup>+241</sup><br>-66      | $\textbf{1.59} \pm \textbf{0.86}$ | $\textbf{241.0} \pm \textbf{15.6}$ | 418 <sup>+76</sup><br>-65      | $\textbf{1.55} \pm \textbf{0.66}$ |
| (3)       | 3779.0 <sup>+2.1</sup><br>-1.9     | 24.4+5.1                     | 32.7             | $\textbf{167.5} \pm \textbf{21.3}$ | 145 <sup>+83</sup><br>-49       | $\textbf{2.09} \pm \textbf{0.87}$ | $243.1 \pm 9.5$                    | 418 <sup>+76</sup><br>-74      | $2.02 \pm 0.86$                   |
| (4) n=1   | 3779.0 <sup>+2.0</sup>             | $24.4^{+5.1}_{-3.7}$         | 32.7             | $\textbf{167.4} \pm \textbf{20.4}$ | $145^{+68}_{-49}$               | $\textbf{2.14} \pm \textbf{0.88}$ | $243.0 \pm 9.6$                    | 422 <sup>+75</sup><br>-74      | $2.07 \pm 0.86$                   |
| (4) n=0.5 | 3779.0 <sup>+1.7</sup><br>-1.6     | 25.2 <sup>+4.2</sup><br>-2.8 | 33.1             | $\textbf{172.2} \pm \textbf{21.6}$ | 171 <sup>+68</sup><br>-65       | $\textbf{1.81} \pm \textbf{0.88}$ | $\textbf{241.3} \pm \textbf{11.9}$ | $419^{+75}_{-68}$              | 1.76 $\pm$ 0.85                   |
| (5) n=0   | $\textbf{3779.6} \pm \textbf{2.0}$ | $25.3 \pm 6.6$               | 31.9             | $\textbf{200.4} \pm \textbf{14.7}$ | $\textbf{137} \pm \textbf{87}$  | $\textbf{2.20} \pm \textbf{0.93}$ | $\textbf{230.3} \pm \textbf{33.0}$ | $\textbf{461} \pm \textbf{73}$ | $2.47 \pm 1.37$                   |
| (5) n=1   | $\textbf{3779.6} \pm \textbf{1.9}$ | $25.3 \pm 6.3$               | 31.8             | $\textbf{176.1} \pm \textbf{16.6}$ | $\textbf{154} \pm \textbf{113}$ | $\textbf{2.14} \pm \textbf{0.91}$ | $\textbf{239.4} \pm \textbf{14.7}$ | 433 $\pm$ 74                   | $\textbf{1.96} \pm \textbf{0.96}$ |
| (5) n=3   | $\textbf{3779.1} \pm \textbf{1.7}$ | $25.2 \pm 4.4$               | 32.9             | $\textbf{126.0} \pm \textbf{15.8}$ | $139 \pm 88$                    | $\textbf{1.89} \pm \textbf{0.90}$ | $\textbf{282.0} \pm \textbf{16.9}$ | 501 $\pm$ 89                   | $2.54 \pm 0.91$                   |

