Search for First Generation Leptoquarks at HERA.

David South (DESY) on behalf of the H1 Collaboration

36th International Conference on High Energy Physics

4 – 11 July 2012 Melbourne Convention and Exhibition Centr

Phys. Lett. B704 (2011) 388

The H1 experiment at HERA

- > H1 detector operated 1992-2007, asymmetric design
- > HERA II phase with longitudinally polarised e[±] beam
- Luminosity of full H1 high energy data ~ 0.5 fb⁻¹
- Initial e[±]p state: Ideal machine to find Leptoquarks

Leptoquark basics

- Leptoquarks are hypothetical colour triplet bosons, with fractional charge, with both lepton and baryon number ≠ 0
- Couple to both quarks and leptons (as well as gluons)
- > Parameterised in terms of mass M_{LQ} , coupling λ and quantum numbers
- The most general model with respect to the SM symmetry groups SU(3)_c x SU(2)_L x U(1)_Y results in the 14 different LQ types*
- Classified by weak isospin, charge, spin and chirality, where the fermion number F = | L + 3B | = 0, 2
- > LQ decays to μq or τq imply lepton flavour violation (LFV)

* W. Buchmüller, R. Rückl, D. Wyler, "Leptoquarks in lepton-quark collisions", Phys. Lett. B191 (1987) 442

Leptoquarks at HERA: Production

David South | Search for First Generation Leptoquarks at HERA | ICHEP 2012, 4-11 July 2012 | Page 4

LQ are chiral particles, gain in sensitivity at HERA II due to polarised lepton beam

DESY

 M_{LO} (GeV)

Leptoquarks at HERA: Decay

 $\begin{array}{c} \text{1st gen: eq} \rightarrow LQ \rightarrow e(\nu)q \\ \text{2nd gen: eq} \rightarrow LQ \rightarrow \mu(\nu)q \\ \text{3rd gen: eq} \rightarrow LQ \rightarrow \tau(\nu)q \end{array} \right\} LFV$

> First generation search: $LQ \rightarrow e(v)q$

- Some LQs decay to neutrino-quark as well as electron-quark: search in NC/CC DIS
- Gauge invariance leads to a branching fraction $\beta_\ell = \Gamma_{\ell q}/(\Gamma_{\ell q} + \Gamma_{\nu_\ell q}) = 0.5$
- Interference with SM NC/CC (identical final state) included in the model
- > Second and third generation searches: LQ $\rightarrow \mu q$, τq
 - No CC contributions considered in the analysis, neutrino flavours indistinguishable

• Branching ratio
$$\beta = \beta_{\ell} \times \beta_{LFV}$$
 with $\beta_{LFV} = \frac{\Gamma_{\mu(\tau)q}}{\Gamma_{\mu(\tau)q} + \Gamma_{eq}}$ and $\Gamma_{\ell q} = m_{LQ} \lambda_{\ell q}^2 \times \begin{cases} \frac{1}{16\pi} & \text{scalar} \\ \frac{1}{24\pi} & \text{vector} \end{cases}$

- Assuming lepton universality, and that only one LFV transition is possible, $\beta_{LFV} = 0.5$
- No LFV transition: first generation only

/

14 LQ types in the BRW model

Туре	J	F	Q	ep dominant process		Coupling	Branching ratio β_{ℓ}	Type J F Q		ep dominant process		Coupling	Branching ratio β_{ℓ}				
S_0^L	0	2	-1/3	$e_L^- u_L$	\rightarrow	$\ell^- u u_\ell d$	$\lambda_L \ -\lambda_L$	$\frac{1/2}{1/2}$	V_0^L	1	0	+2/3	$e_R^+ d_L$	\rightarrow	$\ell^+ d \ ar{ u}_\ell u$	$\lambda_L \ \lambda_L$	$\frac{1/2}{1/2}$
S_0^R	0	2	-1/3	$e_R^- u_R$	\rightarrow	$\ell^- u$	λ_R	1	V_0^R	1	0	+2/3	$e_L^+ d_R$	\rightarrow	$\ell^+ d$	λ_R	1
$ ilde{S}^R_0$	0	2	-4/3	$e_R^- d_R$	\rightarrow	$\ell^- d$	λ_R	1	$ ilde{V}^R_0$	1	0	+5/3	$e_L^+ u_R$	\rightarrow	$\ell^+ u$	λ_R	1
S_1^L	0	2	-1/3	$e_L^- u_L$	\rightarrow	$\ell^- u u_\ell d$	$egin{array}{c} -\lambda_L \ -\lambda_L \end{array}$	$\frac{1/2}{1/2}$	V_1^L	1	0	+2/3	$e_R^+ d_L$	\rightarrow	$\ell^+ d \ ar{ u}_\ell u$	$egin{array}{c} -\lambda_L \ \lambda_L \end{array}$	$\frac{1/2}{1/2}$
			-4/3	$e_L^- d_L$	\rightarrow	$\ell^- d$	$-\sqrt{2}\lambda_L$	1				+5/3	$e_R^+ u_L$	\rightarrow	$\ell^+ u$	$\sqrt{2}\lambda_L$	1
$V_{1/2}^L$	1	2	-4/3	$e_L^- d_R$	\rightarrow	$\ell^- d$	λ_L	1	$S_{1/2}^{L}$	0	0	+5/3	$e_R^+ u_R$	\rightarrow	$\ell^+ u$	λ_L	1
$V^R_{1/2}$	1	2	-1/3	$e_R^- u_L \rightarrow$	$\ell^- u$	λ_R	1	C R	0	0	+2/3	$e_L^+ d_L$	\rightarrow	$\ell^+ d$	$-\lambda_R$	1	
			-4/3	$e_R^- d_L$	\rightarrow	$\ell^- d$	λ_R	1	$S^R_{1/2}$			+5/3	$e_L^+ u_L$	\rightarrow	$\ell^+ u$	λ_R	1
$ ilde{V}^L_{1/2}$	1	2	-1/3	$e_L^- u_R$	\rightarrow	$\ell^- u$	λ_L	1	$ ilde{S}^L_{1/2}$	0	0	+2/3	$e_R^+ d_R$	\rightarrow	$\ell^+ d$	λ_L	1

For ease of comparison to hadron collider limits:

$$\begin{split} \beta_\ell &= 1.0 \text{ LQs}: \ S_0^R \ \tilde{S}_0^R \ V_{1/2}^L \ V_{1/2}^R \ \tilde{V}_{1/2}^L \ V_0^R \ \tilde{V}_0^R \ S_{1/2}^L \ S_{1/2}^R \ \tilde{S}_{1/2}^L \\ \beta_\ell &= 0.5 \text{ LQs}: \ S_0^L \ V_0^L \end{split}$$

High Q² measurements from H1

- > H1 recently completed the high Q² programme of measurements
- > Much information contained in the complete NC and CC analysis
 - See ICHEP talk by Z. Zhang, as well as the publication: **arXiv:1206.7007**

First Generation Search Background: High Q² NC and CC

Final state indistinguishable from SM NC/CC DIS: jet + electron/neutrino

- Selection based on the inclusive DIS analyses
- Look for enhancements in mass spectra

First Generation Leptoquark Search

Sood description of the full HERA I+II H1 data set by the MC prediction, with no significant deviation from SM

First Generation Leptoquark Search: Polarisation Periods

- Analysis of different polarisation periods in HERA II data
- Good description of the H1 data by the SM prediction
- No evidence for LQ signal: interpret in terms of exclusion limits

First Generation Leptoquark Limits for all 14 LQ types

First Generation Leptoquark Search: Example Limits

H1 limits in the resonant LQ production region now superseded by those from the Tevatron and LHC (pair production, independent of λ)

> Still some H1 sensitivity in the CI region, for large values of λ

LQ

LQ

.000

Summary and conclusions

- The ep collisions at the HERA collider are the ideal environment to search for leptoquarks
 - Searches for LQs of all generations have been performed by the H1 experiment using the complete high energy data taken at \sqrt{s} = 319 GeV
- No significant deviation from the SM observed and limits are set on the production of such particles
 - For large values of the coupling λ, HERA limits in CI region are still beyond current limits from hadron colliders
 - LQ masses up to 800 GeV are ruled out @ 95% CL for λ = 0.3

Final H1 search papers:

"Search for Lepton Flavour Violation at HERA", Phys. Lett. B701 (2011) 20 [arXiv:1103.4938]. "Search for First Generation Leptoquarks at HERA", Phys. Lett B704 (2011) 388 [arXiv:1107.3716]. "Search for Contact Interactions in ep Collisions at HERA", Phys. Lett. B705 (2011) 52 [arXiv:1107.2478].

Extra Slides

Table of Scalar LQ mass limits from hadron colliders

Scalar LQs	1st (Gen	2nd	Gen	3rd Gen		
β	1.0	0.5	1.0	0.5	1.0	0.5	
ATLAS	660 ¹	607 ¹	685 ²	594 ²	-	-	
CMS	384 ³	340 ⁴	632 ⁵	523 ⁵	350 ⁶	-	
DØ	299 ⁷	326 ⁸	316 ⁹	270 ⁹	247 ¹⁰	-	
CDF	236 ¹¹	205 ¹¹	226 ¹²	208 ¹²	-	-	

1. "Search for first generation scalar leptoquarks in pp collisions at sqrt{s}=7 TeV with the ATLAS detector", Phys. Lett. B709 (2012) 158-176, Erratum-ibid. 711 (2012) 442, [arXiv:1112.4828].

2. "Search for second generation scalar leptoquarks in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector", arXiv:1203.3172.

3. "Search for pair production of first-generation scalar leptoquarks in pp collisions at sqrt(s) = 7 TeV", Phys. Rev. Lett. 106 (2011) 201802 [arXiv: 1012.4031].

4. "Search for first generation scalar leptoquarks in the evjj channel in pp collisions at sqrt(s) = 7 TeV", Phys. Lett. B703 (2011) 246 [arXiv:1105.5237].

5. "Search for second generation scalar leptoquarks", CMS PAS EXO-11-028.

6. "Search for pair production of third-generation scalar leptoquarks using events produced in pp collisions at sqrt(s) = 7 TeV containing b-jets and missing transverse energy", CMS PAS EXO-11-030.

7. "Search for pair production of first-generation leptoquarks in p anti-p collisions at s**(1/2) = 1.96-TeV", Phys. Lett. B681 (2009) 224 [arXiv:0907.1048].

8. "Search for first generation leptoquark pair production in the electron + missing energy + jets final state," Phys. Rev. D84 (2011) 071104 [arXiv: 1107.1849].

9. "Search for pair production of second generation scalar leptoquarks," Phys. Lett. B671 (2009) 224 [arXiv:0808.4023].

10. "Search for scalar bottom quarks and third-generation leptoquarks in p p-bar collisions at sqrt(s) = 1.96 TeV", Phys. Lett. B693 (2010) 95 [arXiv: 1005.2222].

11. "Search for first-generation scalar leptoquarks in p-pbar collisions at sqrt(s)=1.96 TeV", Phys. Rev. D72 (2005) 051107 [hep-ex/0506074].

12. "Search for second-generation scalar leptoquarks in p-pbar collisions at sqrt(s)=1.96 TeV", Phys. Rev. D73 (2006) 051102 [hep-ex/0512055].