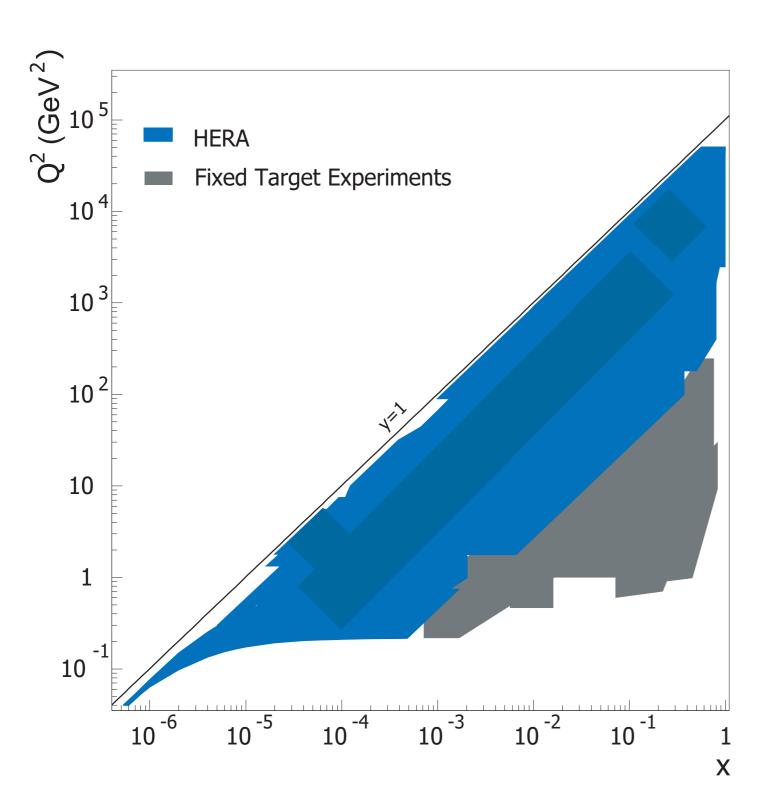

Search for Contact Interactions at HERA

- General Compositeness
- Heavy Leptoquarks
- Large Extra Dimensions
- Quark Radius


Eram Rizvi

Kinematic Range

HERA accesses large reach in kinematic plane High mass states produced at large Q^2 Sensitive to 4-fermion contact interactions Look at Q^2 dependence of DIS cross section...

Deep Inelastic Scattering

$$\frac{d\sigma_{NC}^{\pm}}{dxdQ^2} = \frac{2\pi\alpha^2}{x} \left[\frac{1}{Q^2}\right]^2 \left[Y_+\tilde{F}_2 \mp Y_-x\tilde{F}_3 - y^2\tilde{F}_L\right]$$

$$\frac{d\sigma_{CC}^{\pm}}{dxdQ^2} = \frac{G_F^2}{4\pi x} \left[\frac{M_W^2}{M_W^2 + Q^2}\right]^2 \left[Y_+\tilde{W}_2^{\pm} \mp Y_-x\tilde{W}_3^{\pm} - y^2\tilde{W}_L^{\pm}\right]$$

$$Y_{\pm} = 1 \pm (1 - y)^2$$

$$\tilde{F}_2 \propto \sum (xq_i + x\overline{q}_i)$$

$$x\tilde{F}_3 \propto \sum (xq_i - x\overline{q}_i)$$

$$\tilde{F}_L \propto \alpha_s \cdot xg(x, Q^2)$$

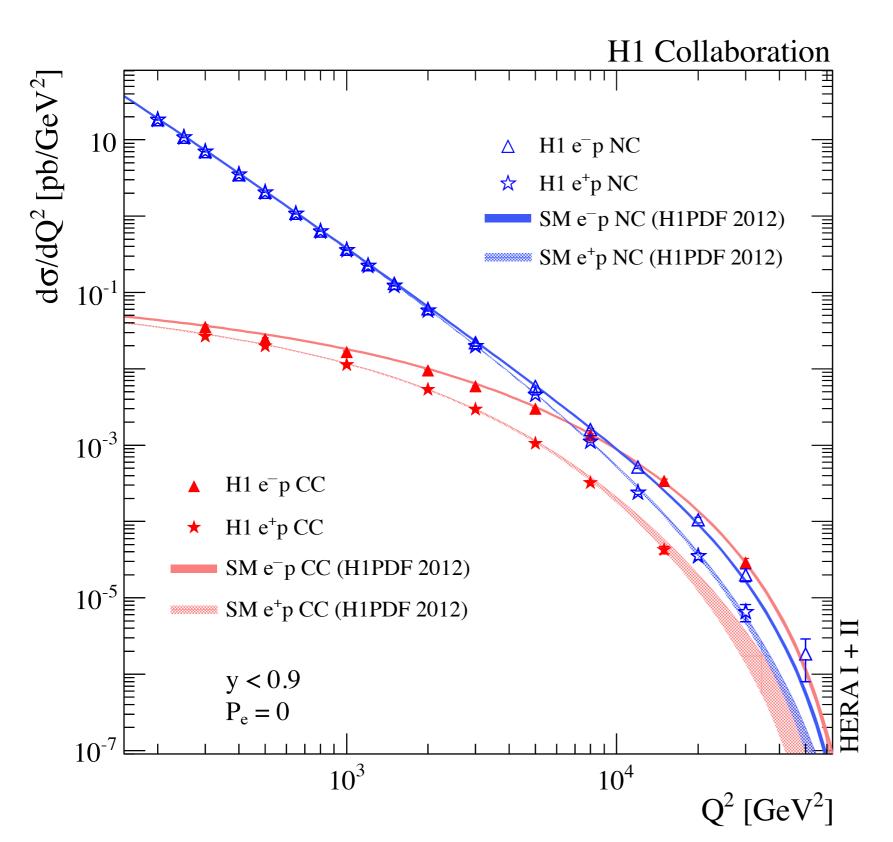
Dominant contribution

Only sensitive at high $Q^2 \sim M_Z^2$

Only sensitive at low Q² and high y

Weaker In (Q²) dependence from QCD part of SM

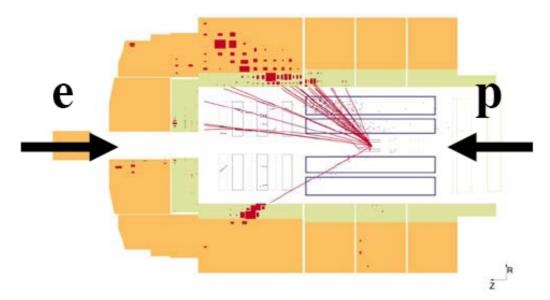
Dominant Q² dependence from electroweak part of SM


similarly for pure weak CC analogues:

$$W_2^{\pm}$$
, xW_3^{\pm} and W_L^{\pm}

Deep Inelastic Scattering

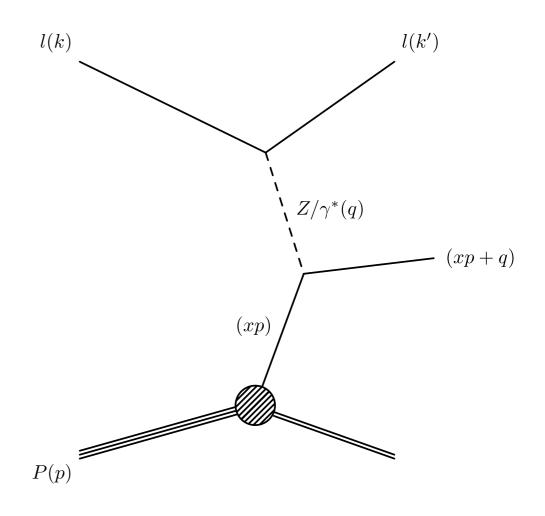
arXiv:1206.7007



Neutral and charged current processes measured across wide Q^2 range

Full HERA data set used

H1 Detector


Neutral current event selection:

High P_T isolated scattered lepton Suppress huge photo-production background by imposing longitudinal energy-momentum conservation

Kinematics may be reconstructed in many ways: energy/angle of hadrons & scattered lepton provides excellent tools for sys cross checks

Removal of scattered lepton provides a high stats "pseudo-charged current sample" Excellent tool to cross check CC analysis

Final selection: ~ 10^5 events per sample at high Q^2 ~ 10^7 events for $10 < Q^2 < 100$ GeV²

HERA Operation

HERA-I operation 1993-2000

Ee = 27.6 GeV

 $E_p = 820 / 920 \text{ GeV}$

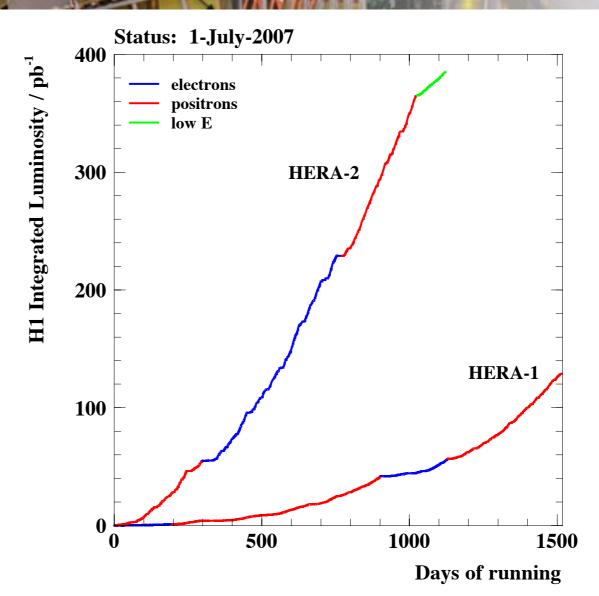
 $\int \mathcal{L} \sim 110 \text{ pb}^{-1} \text{ per experiment}$

HERA-II operation 2003-2007

Ee = 27.6 GeV

Ep = 920 GeV

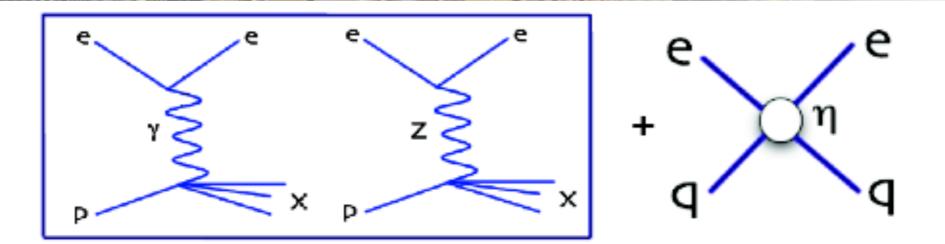
 $\int \mathcal{L} \sim 330 \text{ pb}^{-1} \text{ per experiment}$ Longitudinally polarised leptons


Low Energy Run 2007

Ee = 27.6 GeV

Ep = 575 & 460 GeV

Dedicated F_L measurement


Total luminosity presented here = 446 pb⁻¹

Reaction	$\mathcal{L}_{int} [\mathrm{pb}^{-1}]$	$\sqrt{s} [\mathrm{GeV}]$	Polarisation $(P_e \ [\%])$	
$e^+p \to e^+X$	36	301	Unpolarised	
$e^-p \to e^- X$	16	319	Unpolarised	
$e^+p \to e^+X$	65	319	Unpolarised	
$e^-p \to e^- X$	46	319	Right $(P_e = +37)$	
$e^-p \to e^-X$	103	319	Left $(P_e = -26)$	
$e^+p \to e^+X$	98	319	Right $(P_e = +33)$	
$e^+p \to e^+X$	82	319	Left $(P_e = -38)$	

Search for New Phenomena - Deviations from SM

$$\chi^{2}(\eta, \varepsilon) = \sum_{i} \frac{\left(\sigma_{i}^{\exp} - \sigma_{i}^{\operatorname{th}}(\eta) \left(1 - \sum_{k} \Delta_{ik}(\varepsilon_{k})\right)\right)^{2}}{\delta_{i,\operatorname{stat}}^{2} \sigma_{i}^{\exp} \sigma_{i}^{\operatorname{th}}(\eta) \left(1 - \sum_{k} \Delta_{ik}(\varepsilon_{k})\right) + \left(\delta_{i,\operatorname{uncor}} \sigma_{i}^{\exp}\right)^{2}} + \sum_{k} \varepsilon_{k}^{2}$$

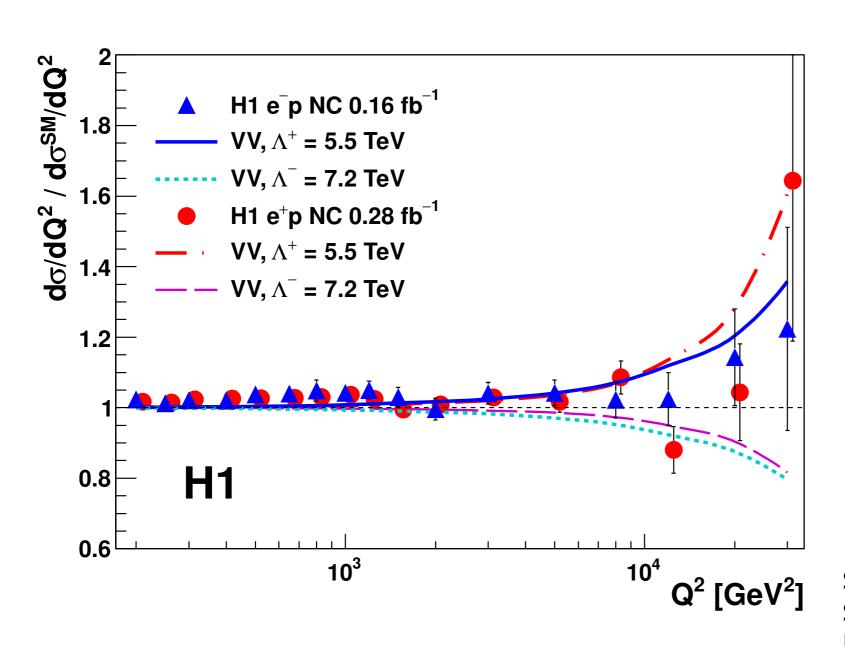
A selection of new physics models are tested Minimise χ^2 function w.r.t. model parameters η Take into account systematic uncertainties on measurements $\Delta_{i,k}$ for each error source ϵ_k

PDFs taken from CTEQ6m Unbiased PDFs - constrained by:

$$\chi^2$$
/ndf (η =0) = 16.4/17 for e⁺p
7.0/16 for e⁻p

fixed target data at low Q^2 and high x Tevatron W/Z production data HERA data at lower Q^2 < 200 GeV²

insensitive to eq contact interactions


Alternative HIPDF2009 also used as check

arXiv:0904.0929

Search For General Compositeness

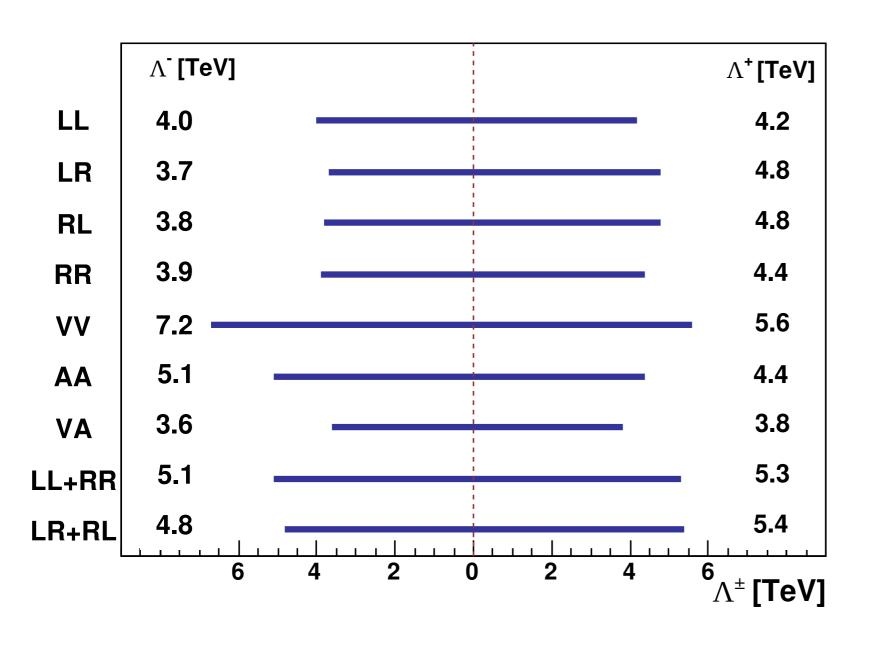
arXiv:1107.2478

Include additional term to SM lagrangian

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{CI}$$

$$\mathcal{L}_{CI} = \sum_{i,j=L,R} \eta_{ij}^{eq} \left(\overline{e}_i \gamma_{\mu} e_i \right) \left(\overline{q}_j \gamma^{\mu} q_j \right)$$

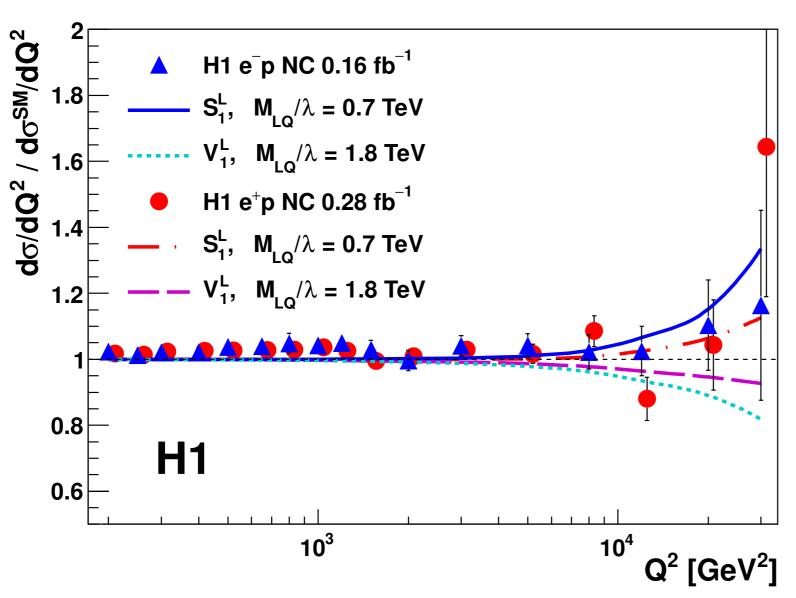
$$\eta_{L,R}^{eq} = \frac{\pm 4\pi}{\Lambda^2}$$


Several general models tested
Single common compositeness scale Λ Different L,R fermion helicities
Different Vector / Axial-vector chiral couplings

Different models will interfere constructively or destructively with SM

Search For General Compositeness

arXiv:1107.2478



Lower limits at 95% CL on effective mass scale: $\Lambda > 3.2$ to 7.2 TeV

Search For Heavy Leptoquarks

arXiv:1107.2478

Search for lepto-quarks with masses $M_{LQ}\gg \sqrt{s}$ produced with coupling λ

Search for scalar and vector LQs with: L and R chirality fermion number F=0 or 2

$$\eta = \epsilon \frac{\lambda^2}{M_{LQ}^2}$$

$$\epsilon = 0, \pm \frac{1}{2}, \pm 1, \pm 2$$

Lower limits at 95% CL: $M_{LQ}/\lambda > 0.41$ to 1.86 TeV

Search For Heavy Leptoquarks

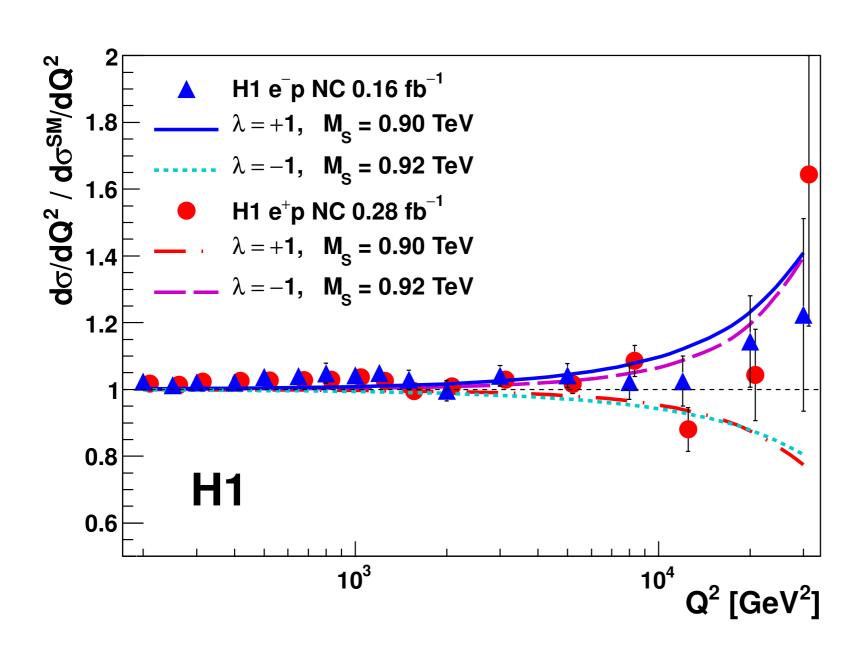
$\eta_{ab}^q = \epsilon_{ab}^q \; \lambda^2 / M_{\rm LQ}^2$						
LQ	ϵ^u_{ab}	ϵ^d_{ab}	F	$M_{\rm LQ}/\lambda~{ m [TeV]}$		
S_0^L	$\epsilon^u_{LL} = +\frac{1}{2}$		2	1.10		
S_0^R	$\epsilon^u_{RR} = +\frac{1}{2}$		2	1.10		
\tilde{S}_0^R		$\epsilon^d_{RR} = +\frac{1}{2}$	2	0.41		
$S_{1/2}^{L}$	$\epsilon^u_{LR} = -\frac{1}{2}$		0	0.87		
$S_{1/2}^{R}$	$\epsilon^u_{RL} = -\frac{1}{2}$	$\epsilon^d_{RL} = -\frac{1}{2}$	0	0.59		
$\tilde{S}_{1/2}^{L}$		$\epsilon^d_{LR} = -\frac{1}{2}$	0	0.66		
S_1^{L}	$\epsilon_{LL}^u = +\frac{1}{2}$	$\epsilon_{LL}^d = +1$	2	0.71		
V_0^L		$\epsilon^d_{LL} = -1$	0	1.06		
V_0^R		$\epsilon^d_{RR} = -1$	0	0.91		
$ ilde{V}_0^R$	$\epsilon_{RR}^u = -1$		0	1.35		
$V_{1/2}^L$		$\epsilon^d_{LR} = +1$	2	0.51		
$V_{1/2}^{R}$	$\epsilon^u_{RL} = +1$	$\epsilon^d_{RL} = +1$	2	1.44		
$\tilde{V}_{1/2}^L$	$\epsilon_{RL}^u = +1$ $\epsilon_{LR}^u = +1$		2	1.58		
V_1^L		$\epsilon^d_{LL} = -1$	0	1.86		

arXiv:1107.2478

Search for lepto-quarks with masses $M_{LQ} \gg \sqrt{s}$ produced with coupling λ

Search for scalar and vector LQs with: L and R chirality fermion number F=0 or 2

$$\eta = \epsilon \frac{\lambda^2}{M_{LQ}^2}$$


$$\epsilon = 0$$
, $\pm \frac{1}{2}$, ± 1 , ± 2

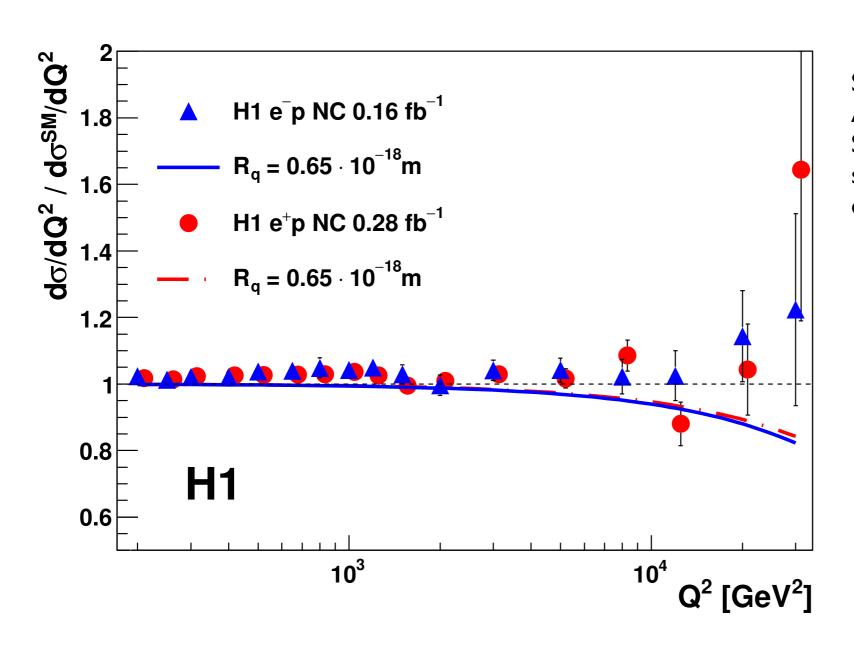
Lower limits at 95% CL: $M_{LQ}/\lambda > 0.41$ to 1.86 TeV

Search For Large Extra Dimensions

arXiv:1107.2478

Compactified extra dimensions of size R could become accessible at high energies below Planck scale M_P . New gravity scale in n extra dimensions is M_S

$$M_S^{2+n} = \frac{M_P^2}{R^n}$$


coupling
$$\eta_G = \frac{\lambda}{M_S^4}$$

with
$$\lambda = \pm I$$

Lower limits at 95% CL on effective mass scale: $M_S > 0.9$ TeV

arXiv:1107.2478

Search for quark sub-structure Assume point-like electron Simple form-factor model for the mean squared radius of electroweak charge on the quark $\langle R^2 \rangle$

$$f(Q^2) = 1 - \frac{\left\langle R^2 \right\rangle}{6} Q^2$$

Upper limit at 95% CL $R < 0.65 \times 10^{-18} \, \text{m}$

Conclusions

A range of new phenomena models are explored New limits on compositeness models factor ~2 higher than previous H1 measurements Comparable limits to LEP and Tevatron