The Alpha Magnetic Spectrometer (AMS)

ISS: 108x80m 420T 240KW 400km AMS: 5x4x3m 7 5T 2.4KW

Veronica Bindi Assistant Professor Physics and Astronomy Department University of Hawaii at Manoa

Scientific goals of AMS on the International Space Station

- Direct search of primordial antimatter: Anti-nuclei: He, C
- Indirect search of Dark Matter:

e+ , antiprotons, γ , ... simultaneous observation in several signal channels

- New forms of matter: strangelets
- Identification of local sources of high energy photons (~TeV): SNR, Pulsars, PBH
- Measuring CR spectra up to the iron-refining propagation models;
- Solar modulation on CR spectra over 11 year solar cycle

AMS is a US DOE led International Collaboration

Spokesperson: Nobel laureate Prof. Dr. S. Ting from MIT **16 Countries, 60 Institutes and 600 Physicists**

The detectors and the electronics were built all around the world and assembled in CERN, Switzerland

AMS is designed with the same precisions as the CERN LHC detectors the technology has been miniaturized and upgraded to work on space

AMS consists of 5 sub-detectors which provide redundant information for particle identification

Magnet

±Ζ

same of AMS-01 B \sim 0.14 Tesla uniform along x no field leak outside no torque outside

Silicon Tracker

Ζ, Ρ

9 layers silicon 192 readout channels resolution of 10 μ m in bending direction

TRD

Identify e⁺, e⁻ 20 layers of radiators and 6mm straw tubes Xe/CO₂ (80%/20%) gas 5248 channels

RICH

Z,E

Areogel and NaF radiators conical reflector 10880 photosensors

ECAL

E of e⁺, e⁻, γ 3D sampling calorimeter 17 X0 50000 fibers 1mm thick e/p separation 10⁴

650 computers, 300,000 channels. A ten year effort by 75 engineers 400% redundancy

AMS in the ESA EMI and TVT tests

Test Beam Results

A US-AirForce C-5 Galaxy has been used for transport from Geneva to KSC - August 25th 2010

AMS in Endeavour's Payload Bay

Launch of the Space Shuttle Endeavour May 16, 2011 @ 08:56 AM

Temperatures and slow-control data monitoring started 2.5 h after the launch

May 19: AMS installation completed at 5:15 AM. Data taking started at 9:35 AM

42 GeV/c Carbon

AMS Event Display

Run 1305815610/ 224169 Thu May 19 16:42:29 2011

AMS installed on ISS @ 16:15 Geneva time AMS start data taking @ 16:35 Geneva time

AMS Operations

Flight Operations

Ground Operations

S-Band Low Rate (up & down): Commanding: 1 Kbit/s Monitoring: 30 Kbit/s

Ku-Band

High Rate (down): Events:10Mbit/s

TDRS Satellites

AMS Payload Operations Control and Science Operations Centers (POCC, SOC) at CERN

at MSFC, AL

White Sands Ground **Terminal**, NM

Orbital DAQ parameters

DAQ efficiency

Particle rates vary from 200 to 2000 Hz per orbit

Average DAQ efficiency 85% Average DAQ rate ~700Hz

Data taking continuously active

In 10 - 20 years AMS will collect from 160-320 billion events.

This will provide unprecedented sensitivity and statistic.

1.03 TeV electron

369 GeV Positron

120 GeV Photon

17 X_0 , 3D ECAL, measure γ to 1 TeV, time resolution of 1 μ sec

Nuclei in the TeV range

Over 1,100 temperature sensors and 298 heaters are monitored to assure components stay within thermal limits and avoid permanent damage.

Due to temperature variations the TRD is moving on top of the inner tracker by up to 1 mm.

TRD alignment

Cosmic protons are used for alignment to an accuracy of 0.04 mm for each straw module.

TRD gain calibration

Due to temperature, pressure, gas composition and HV changes, the TRD detector response is changing.

Cosmic ray protons are used to calibrate the detector response to 3% accuracy

Tracker works as expected

Δ Y [µm]

Jan 21

Jan 21

He rate

Conclusions

The Cosmos is the ultimate Lab: cosmic rays can be observed at energies higher than any accelerator

- AMS02 is in orbit since May 16th 2011
- All the detectors are properly functioning with DAQ in nominal conditions since May 19th 2011
- Ground operations (POCC and SOC) run smoothly
- Detector calibration (alignment, e/p rejection, charge id, etc.) are well advanced
- 10+ years on board the ISS at 16 10⁹ events/year: great discovery potential

Science coming soon!!

Back-ups

Evolution of the beta angle through 2012, with dates of extreme values At large positive values, the port side of AMS is hot and the starboard side cold.

Vice-versa for large negative beta angles

Solar Constant: illumination by the sun

Scientific goals

γ rays astrophysics up to TeV energies

conversion mode

single photon mode

Energy spectrum for pulsars in the 100 MeV - 1 TeV and pulsar periods measured with µsec time precision.

Similar studies can be made for Blazers and Gamma Ray Bursters.

γ rays astrophysics up to TeV energies

The diffuse gamma-ray spectrum of the Galactic plane

Tracker and Ecal Performances

Search for New Matter in the Universe

After many years, the question of the existence of strange quark matter still remains without a definitive answer.

There are six types of Quarks found in accelerators (*u*, *d*, *s*, *c*, *b*, *t*). All matter on Earth is made out of only two types (*u*, *d*) of quarks. "Strangelets" are new types of matter composed of three types of quarks (*u*, *d*, *s*) which should exist in the cosmos.

E. Witten, Phys. Rev. D,272-285 (1984)

Jack Sandweiss (Yale) is leading the AMS search.

Candidate observed with AMS-01 5 June 1998 11:13:16 UTC

Strangelets

Antimatter search

Dark Matter search: positron channel

AMS will explore the indirect detection of dark matter, measuring the dark matter annihilation and collision products. Combining searches in several different channels as:

- e+
- Photons
- **-**p
- Antideuterons

The leading candidate for Dark Matter is a SUSY neutralino (χ^0)

Collisions of χ^0 will produce excess in the spectra of e⁺ different from known cosmic ray collisions

- Use the AMS Tracker and Electromagnetic Calorimeter to define a clean Electron and Proton sample.
- Study the TRD response in Space and determine the particle identification power from space data directly !

Electron vs. Proton

AMS TRD

TRD Proton Rejection at 90% Electron Efficiency

Alignment

AMS Data on ISS

Stability of the Inner Silicon Tracker of AMS (not corrected for the pointing stability of the laser beams!)

Typical stability of an inner tracker plane is 0.1 µm as measured with Protons on the ISS

Stability of Layer 1 with respect to the Inner Tracker (bending plane)

Magnet

Magnets Comparison

Bscm ~ 0.87 T I ~ 1 m

Bpm ~ 0.14 T L ~ 4 m

/66

Test Beam Results- 8-20 Aug 2010

Test Beam Results of detector with superconducting magnet

is equal (to 10%) to that of the superconducting magnet.

Rigidity resolution

Lifetime

A. The lifetime of consumables – TRD Leak rate

Caused by CO_2 Diffusion CO_2 Storage at Launch: 5 kg Leakrate of 5 µg / s corresponds to a

TRD Lifetime of 30 Years

AMS-02 data flow

AMS Data/MC Volumes Projected

DATA

- Per Year Of Operation:
- 1.6×10¹⁰ Events
- 35 TB Raw Events
- 130 TB Reconstructed Ev.

MC

Per Year Of Operation:

- ~2 X 10¹⁰ Simulated Events
- ~ 200 TB Simulated Data Volume