Hadronic B Decays at Belle T'Mir D. Julius

ICHEP 2012 T. D. Julius 0

Outline

- $B \rightarrow \phi \pi$
 - arXiv:1206.4760v1
 - New upper limit
- $B \rightarrow K\pi$, KK, $\pi\pi$
 - K⁺π⁻, K⁺π⁰, K⁰π⁺, π⁺π⁻, K⁺K⁰, K⁰K⁰ branching fraction and A_{CP} using final Belle dataset
 - New $K^0\pi^0$ branching fraction using final Belle dataset
 - New $\pi^+\pi^-$ branching fraction using final Belle dataset
- $B \rightarrow K K$
 - New K⁺K⁻ upper limit using final Belle dataset

Hadronic B Decays

- Charmless B decays provide an excellent probe in to the accuracy of the Standard Model
- Measurement of Branching Fractions and A_{CP} can be used to measure CKM parameters
- Measurements can confirm theoretical predictions, or indicate the presence of New Physics.

Dataset

- Using Y(4S) data collected using the Belle detector at the KEKB asymmetric e⁺e⁻ collider
- B → φπ is measured using 657 x 10⁶ BB pairs after processing
- All other analyses are performed on the full Belle Y(4S) dataset of 772 x 10⁶ BB pairs

Event selection and analysis

 B meson candidates are identified using two kinematic variables

•
$$M_{BC} = \sqrt{E_{Beam}^2 - |\sum_i p_i|^2}$$

• $\Delta E = \sum_i E_i - E_{Beam}$

 These analyses all make use of a continuum suppression variable made up of a combination of event properties combined in to a likelihood ratio (LR)

Continuum Suppression

- Typical continuum suppression variables include the
 - Modified Super Fox Wolfram moments combined using a Fisher discriminant
 - The distance between the vertices of the reconstructed B and the tag-side B (ΔZ) (charged track modes only)
 - The B flight direction with respect to the beam axis (Cos(B))

$B \rightarrow \phi \pi$

- $B \rightarrow \phi \pi$ is forbidden at tree level and can only proceed through penguin processes u,d
- Expected SM branching fraction:
 - $B^0 \rightarrow \varphi \pi^0 \sim 6.8 \times 10^{-9}$
 - $\circ \quad B^{+} \to \varphi \pi^{+} \thicksim 3.2 \ x \ 10^{-8} \ \text{(Y. Li et al. Phys. Rev. D 80, 014024 (2009))}$
- Upper limits from BaBar:
 - $B^0 \to \varphi \pi^0 < 2.8 \text{ x } 10^{-7}$
 - $B^+ \rightarrow \varphi \pi^+ < 2.4 \text{ x } 10^{-7}$
- A precise measurement provides a means to study SM from suppressed diagrams in other modes including non-perturbative effects
- An enhanced branching fraction could indicate CMSSM, or the presence of a Z[´] boson.

Analysis

- Φ candidates are created from a pair of charged kaons with an invariant mass within 2.5σ of the Φ full width
- The K⁺K⁻, is then combined with either a π^+ or a π^0 candidate
- M_{BC} > 5.2GeV, and $|\Delta E| < 0.1$ for B⁺→φπ⁺ and $|\Delta E| < 0.4$ for B⁰→φπ⁰
- The M_{BC}-∆E fit cannot distinguish signal from B→K⁺K⁻π
- Additional background suppression is achieved through the use of B tagging algorithm

Source of systematic uncertainty	B > φπ ⁺ (%)	B > φπ ⁰ (%)
MC Statistics	0.6	0.8
PID	2.0	1.3
Tracking	3.1	2.0
$\pi^0 \text{eff}$	-	3.0
Continuum Likelihood	2.4	4.1
N _{BB}	1.4	1.4

Results $B \rightarrow \phi \pi^+$

Signal + Continuum (dotted) Continuum (dashed) Non-resonant $B \rightarrow K^+K^-\pi$ Other Background Total

		Statistic	Systematic
Yield	4.5	+5.1, -4.3	+3.1, -6.9
c(data)	8.4%	-	-
B x 10- ⁷	0.8	+0.9, -0.8	+0.6, -1.3
B _{UL} x 10 ⁻⁷	3.3	-	-

Projection of fits in the fit region with ΔE on the left and M_{BC} on the right.

9

Results $B \rightarrow \phi \pi^0$

Signal + Continuum (dotted) Continuum (dashed) Non-resonant $B \rightarrow K^+K^-\pi$ Other Background Total

		Statistic	Systematic
Yield	-2.2	+2.1, -1.2	+1.3, -2.4
c(data)	4.9%	-	-
B x 10 ⁻⁷	-0.7	+0.6, -0.4	+0.64 -0.8
B _{UL} x 10 ⁻⁷	1.5	-	-

Projection of fits in the fit region with ΔE on the left and M_{BC} on the right.

$B \to \pi \pi$, $K \pi,$ and K K

- Theoretical calculations for these BF have large uncertainties
- These errors will cancel out in ratios of measurements
- The A_{CP} measurements will help observe SM quantities
- Improved experimental uncertainties can help our understanding of the standard model and help identify New Physics

Analysis

- K⁰ candidates are created from a pair of charged pions with an invariant mass within 5.2 σ of the K⁰ full width $\vec{p}_B = \vec{p}_B + \frac{\vec{p}_{\pi^0}}{1 + 1} \sqrt{(E_B)}$
 - $\vec{p}_B = \vec{p}_h + \frac{\vec{p}_{\pi^0}}{|p_{\pi^0}|} \sqrt{(E_{Beam} E_h)^2 m_{\pi^0}^2}$
- Decays with a π^0 in the final state use an M_{BC} that accounts for the shower leakage in the ECL
- In the case of modes similar to each other (B⁰→K⁺π⁻ and B⁰→π⁺π⁻, B⁺→K⁺π⁰ and B⁺→π⁺π⁰, and B⁺→K⁰π⁺ and B⁺→K⁰K⁺) a simultaneous fit was performed on both modes at once
- Other modes were fitted separately
- Shapes were fitted in 3 dimensions $M_{BC}, \Delta E$ and the continuum suppression variable

 $\Delta A_{K\pi} = A_{CP}(K\pi^0) - A_{CP}(K\pi)$

- As B→K⁺π⁰ and B⁰→K⁺π⁻ have very similar leading order Feynman diagrams, we would expect them to have similar A_{CP}
- A difference could indicate the enhancement of the colour suppressed tree diagram

- However, the previous Belle result found the sign and magnitude of these asymmetries to be different
- The difference in these could indicate new Physics, such as a difference between direct CP in neutral and charged B decays

$B \rightarrow K^+\pi^-$ and $B \rightarrow \pi^+\pi^-$

Mode	Yield	Branching Fraction x 10 ⁻⁶	A _{CP}
$B \to K^{\text{+/-}} \pi^{\text{+/-}}$	7525 ± 127	20.00 ±0.34 ±0.63	$-0.069 \pm 0.014 \pm 0.007$
$B\to\pi^{*}\pi^{-}$	2111 ± 89	5.04 ±0.21 ±0.19	Update coming soon

$B \rightarrow K^+\pi^0$ and $B \rightarrow \pi^+\pi^0$

Mode	Yield	Branching Fraction x 10 ⁻⁶	A _{CP}
$B\to K^{*}\pi^{0}$	3731 ± 92	12.62 ±0.31 ±0.56	$+0.043\pm0.024\pm0.002$
$B\to\pi^{*}\pi^{0}$	1846 ± 82	5.86 ±0.26 ±0.38	$+0.025\pm0.043\pm0.007$

Previous Belle Result

 $A_{CP} B \rightarrow K \pi^0$:

0.07±0.03 ±0.01 Using 535 x 10⁶ BB pairs Nature **452**, 332 (2008)

 $A_{CP} B \rightarrow \pi \pi^0$:

 $0.07 \pm 0.06 \pm 0.01$ Using 535 x 10⁶ BB pairs Nature **452**, 332 (2008)

 $\Delta A_{K\pi} = A_{CP}(K\pi^0) - A_{CP}(K\pi)$

Previous Belle Result: $\Delta A_{K\pi} = +0.164 \pm$

 $\Delta A_{K\pi} = +0.112 \pm$

ICHEP 2012 T. D. Julius

$B \rightarrow K^0 \pi^{+/0}$ and $B \rightarrow K^0 K^{+/0}$

Mode	Yield	Branching Fraction x 10 ⁻⁶	A _{CP}
$B\to K^0\pi^{\scriptscriptstyle +}$	3229 ± 71	$23.97^{+0.53}_{-0.52}\pm0.69$	-0.014±0.021 ±0.006
$B \to K^0 K^{\scriptscriptstyle +}$	134 ± 23	$1.11^{+0.19}_{-0.18} \pm 0.05$	$+0.017\pm0.168\pm0.002$
$B\to K^0 K^0$	103 ± 15	$1.26^{+0.19}_{-0.18} \pm 0.06$	-
$B\to K^0\pi^0$	961 ± 45	9.68 ±0.46 ±0.50	-

 $B \rightarrow K^+K^-$

- The branching fraction of $B \rightarrow K^+K^-$ is expected to be 2 orders of magnitude smaller than $B \rightarrow K^+\pi^-$
- B→K⁺π⁻ is a large background for this mode
- $B \rightarrow \pi^+ \pi^-$ also makes a contribution

B→K⁺K⁻

Mode	Yield	Branching Fraction x 10 ⁻⁶
$B \to K^{+}K^{-}$	35 ± 29	0.10±0.08±0.04 (< 0.20) to 1.2σ

Experiment	BF x 10 ⁻⁶	
Belle 2007	$0.09^{+0.18}_{-0.13}\pm0.01$	(< 0.41)
Babar 2007	$0.04 \pm 0.15 \pm 0.08$	(< 0.5)
PDG 2010	$0.15^{+0.11}_{-0.10}$	(< 0.41)
LHCb 2012 (Preliminary)	$0.11^{+0.05}_{-0.04}\pm0.06$	(< 0.18)

The A_{CP} Sum rule

- While A_{Kπ} asymmetry can be explained by colour suppressed tree diagrams, the A_{CP} sum rule is a model independent, and should hold (Gronau et al. hep-ph/0608040)
- The A_{CP} sum rule is found to be non-zero to 2σ

$$\begin{split} A_{CP}(K^{+}\pi^{-}) + A_{CP}(K^{0}\pi^{+}) \frac{B(K^{0}\pi^{+})}{B(K^{+}\pi^{-})} \frac{\tau_{0}}{\tau_{+}} &= A_{CP}(K^{+}\pi^{0}) \frac{2B(K^{+}\pi^{0})}{B(K^{+}\pi^{-})} \frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0}) \frac{2B(K^{0}\pi^{0})}{B(K^{+}\pi^{-})} \\ A_{CP}(K^{+}\pi^{-}) + A_{CP}(K^{0}\pi^{+}) \frac{\Gamma(K^{0}\pi^{+})}{\Gamma(K^{+}\pi^{-})} &= A_{CP}(K^{+}\pi^{0}) \frac{2\Gamma(K^{+}\pi^{0})}{\Gamma(K^{+}\pi^{-})} + A_{CP}(K^{0}\pi^{0}) \frac{2\Gamma(K^{0}\pi^{0})}{\Gamma(K^{+}\pi^{-})} \end{split}$$

Left side - right side = -0.270 ± 0.142

Using Acp(K⁰π⁰=+0.14+-0.13+-0.06 PRD **81**, 011101, (2010) Belle.

Conclusion

- New branching fractions and direct A^{CP} are available for B→hh the final Belle dataset with improved analyses (Publication coming soon!!)
- A new, improved upper limit is available for $B \rightarrow \varphi \pi$ from Belle
- The ratios present in B → hh are consistent with the expected theoretical values, and have errors that are comparable with theoretical errors
- K⁺K⁻ upper limits were improved by a factor of 2