NLO Assistance to LHC Searches with Complex Final States using BlackHat and Sherpa

Lance Dixon (SLAC) for the BlackHat collaboration
Z. Bern, LD, G. Diana, F. Febres Cordero, S. Höche, H. Ita, D. Kosower, D. Maître, K. Ozeren

ICHEP
Melbourne, Australia
July 5, 2012
Classic SUSY dark matter signature

→ Multiple jets + missing energy (+ lepton(s)?)

In models such as supersymmetry, heavy produced particles (colored) decay rapidly to stable Weakly Interacting Massive Particle (WIMP) plus jets

→ Missing transverse energy
MET + 4 jets
Irreducible Standard Model Background

- MET + 4 jets from
 \[pp \rightarrow Z + 4 \text{ jets}, \]
 \[Z \rightarrow \nu\nu \]
- Neutrinos also weakly interacting, escape detector.
- Also large background from
 \[pp \rightarrow W + 4 \text{ jets}, \]
 \[W \rightarrow l\nu \]
 \((~10x \ Z \rightarrow \nu\nu \text{ rate}) \)
 - if you lose the charged lepton
 (- or if you want a lepton)

- Motivates theoretical and experimental study of \(V + n \) jets at Tevatron and LHC.
- Talks in this session by Strauss, Mesropian, Beauchemin, Lenzi, Ganguli, Kosower, Schönherr
Recent progress on $V + \text{jets}$ at NLO

MCFM: $V + 0,1,2 \text{jets}$ Campbell, Ellis, hep-ph/0202176

Rocket: $W + 3 \text{jets}$ Ellis, Melnikov, Zanderighi, 0901.4101, 0906.1445

Blackhat+Sherpa: Berger, Bern, LD, Diana, Febres Cordero, Forde, Gleisberg, Höche, Ita, Kosower, Maître, Ozeren

$W + 3 \text{jets}$ 0902.2760, 0907.1984
$Z + 3 \text{jets}$ 1004.1659
$W + 4 \text{jets}$ 1009.2338
$Z + 4 \text{jets}$ 1108.2229
$W + 5 \text{jets}$ 12mm.nnnn

- Could try to use such predictions **directly** for backgrounds to experimental searches.
- However, it is generally safer to use **data-driven techniques**
Data Driven Techniques

• Measure process “close” to the one you want to estimate. (Possibly the same process in a different kinematic region.)
• Rely on theory only for ratio of desired process to measured one.
• Ratios can be considerably less sensitive to:
 - perturbative uncertainties
 - shower + nonperturbative effects
 - jet energy scale
 - pdf uncertainties
• Nevertheless, useful to have at NLO as well as LO+shower.
• Examples of $V + j$ets ratios:
 • $[W + n \text{jets}]/[Z + n \text{jets}]$
 • $[W^+ + n \text{jets}]/[W^- + n \text{jets}]$
 • $[\gamma + n \text{jets}]/[Z + n \text{jets}]$
 • W polarization fractions
 • $[V + n \text{jets}]/[V + (n-1) \text{jets}]$
\[\gamma + \text{jets} \quad \text{for} \quad Z(\rightarrow \nu\nu) + n \text{ jets} \]

- CMS [CMS PAS SUS-08-002, SUS-10-005, 1106.4503] and ATLAS [1107.2803, 1109.6572] both use \(\gamma + \text{jets} \) to “calibrate” \(Z(\rightarrow \nu\nu) + \text{jets} \) SUSY background.
- High rate compared to \(Z(\rightarrow l^+l^-) \), relatively clean.
- But: How much does a \(\gamma \) behave like a \(Z \)?
- \(E.g. \), photon-quark collinear pole is cut off by \(Z \) mass in the \(Z \) case. Does this make much difference?
NLO \((Z + 2 \text{ jets})/ (\gamma + 2 \text{ jets})\)

- Computed \((Z + 2 \text{ jets})/ (\gamma + 2 \text{ jets})\) as a function of various kinematic variables, 3 different ways:
 - LO (just for reference)
 - NLO (probably the most reliable)
 - LO+shower (ME+PS) – to estimate NLO error, and because it is similar to what CMS/ATLAS rely on.
- Traditional method of varying renormalization and factorization scales does not provide useful uncertainty estimate for ratios of similar quantities
- We used a “Frixione” photon isolation to simplify the NLO theory, but checked that it’s within \(\sim 1\%\) of CMS’s isolation cone.
(Z + 2 jets)/ (γ + 2 jets) distributions

- Azimuthal angle distribution, between MET vector and \(p_T \) vector of 1\(^{\text{st}} \), 2\(^{\text{nd}} \) jets

- LO distribution wrong – kinematics too restrictive.
NLO and ME+PS agree to within about 10% in \(Z/\gamma \) ratio.
NLO \((Z + 3 \text{ jets})/ (\gamma + 3 \text{ jets})\)

- Most events in CMS samples have at least 3 jets
- For 2011 data, new (tighter) kinematic cuts

2010 data

Set 1: \(H_T^{\text{jet}} > 300 \text{ GeV}, |\text{MET}| > 250 \text{ GeV}\)

Set 2: \(H_T^{\text{jet}} > 500 \text{ GeV}, |\text{MET}| > 150 \text{ GeV}\)

Set 3: \(H_T^{\text{jet}} > 300 \text{ GeV}, |\text{MET}| > 150 \text{ GeV}\)

Set 4: \(H_T^{\text{jet}} > 350 \text{ GeV}, |\text{MET}| > 200 \text{ GeV}\)

2011 data

Set 5: \(H_T^{\text{jet}} > 500 \text{ GeV}, |\text{MET}| > 350 \text{ GeV}\)

Set 6: \(H_T^{\text{jet}} > 800 \text{ GeV}, |\text{MET}| > 200 \text{ GeV}\)

Set 7: \(H_T^{\text{jet}} > 800 \text{ GeV}, |\text{MET}| > 500 \text{ GeV}\)
NLO \((\gamma + 3 \text{ jets})/ (Z + 3 \text{ jets})\) results

<table>
<thead>
<tr>
<th>Set</th>
<th>Prediction</th>
<th>(Z + 3)-jet/(\gamma + 3)-jet</th>
<th>(Z + 2)-jet/(\gamma + 2)-jet</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>LO</td>
<td>0.215(0.001)</td>
<td>0.2336(0.0003)</td>
<td>0.922(0.003)</td>
</tr>
<tr>
<td></td>
<td>ME+PS</td>
<td>0.194(0.003)</td>
<td>0.213(0.002)</td>
<td>0.908(0.01)</td>
</tr>
<tr>
<td></td>
<td>NLO</td>
<td>0.209(0.003)</td>
<td>0.215(0.001)</td>
<td>0.973(0.01)</td>
</tr>
<tr>
<td>5</td>
<td>LO</td>
<td>0.245(0.001)</td>
<td>0.257(0.001)</td>
<td>0.952(0.01)</td>
</tr>
<tr>
<td></td>
<td>ME+PS</td>
<td>0.230(0.004)</td>
<td>0.239(0.004)</td>
<td>0.961(0.02)</td>
</tr>
<tr>
<td></td>
<td>NLO</td>
<td>0.242(0.01)</td>
<td>0.246(0.002)</td>
<td>0.981(0.02)</td>
</tr>
<tr>
<td>6</td>
<td>LO</td>
<td>0.220(0.002)</td>
<td>0.232(0.001)</td>
<td>0.948(0.01)</td>
</tr>
<tr>
<td></td>
<td>ME+PS</td>
<td>0.218(0.004)</td>
<td>0.232(0.003)</td>
<td>0.940(0.02)</td>
</tr>
<tr>
<td></td>
<td>NLO</td>
<td>0.222(0.01)</td>
<td>0.224(0.002)</td>
<td>0.988(0.03)</td>
</tr>
<tr>
<td>7</td>
<td>LO</td>
<td>0.257(0.003)</td>
<td>0.259(0.001)</td>
<td>0.992(0.01)</td>
</tr>
<tr>
<td></td>
<td>ME+PS</td>
<td>0.244(0.01)</td>
<td>0.261(0.003)</td>
<td>0.935(0.02)</td>
</tr>
<tr>
<td></td>
<td>NLO</td>
<td>0.254(0.01)</td>
<td>0.255(0.003)</td>
<td>0.993(0.03)</td>
</tr>
</tbody>
</table>

BH+S, 1206.nnnn

ME+PS, NLO always within 10%

pdf and other uncertainties 5% or less

Validates this method of estimating background
W^+ and W^- “differ” at LHC: polarized same way [left-handed]

$$\frac{1}{\sigma d \cos \theta^*} \frac{d\sigma}{d\cos \theta^*} = \frac{3}{8} (1 \pm \cos \theta^*)^2 f_L + \frac{3}{8} (1 \pm \cos \theta^*)^2 f_R + \frac{3}{4} \sin^2 \theta^* f_0$$

Helicity frame:
Leptonic E_T in $W^\pm + 3$ jets

W^+/W^- transverse lepton ratios are skewed because they are analyzing a large left-handed W polarization at large $p_T(W)$.
Origin of W polarization at LHC at large $p_T(W)$

$ug \rightarrow W^+ d$ dominates due to pdfs at a pp machine. Only 2 relevant helicity configurations:

100% left-handed (in partonic CM frame)

Mixture of polarizations \rightarrow 100% right-handed, but only $\frac{1}{4}$ the size
Stable W polarization: $W + 2$ jets, vs. Jet p_T cut

![Graph showing f_L, f_R, and f_0 vs. p_{T,W^+} for different $p_{T,jet}$ cuts.]

- $p_{T,jet} > 10$ GeV
- $p_{T,jet} > 20$ GeV
- $p_{T,jet} > 30$ GeV
- $p_{T,jet} > 50$ GeV
- $p_{T,jet} > 100$ GeV

Also stable vs. number of jets

$\sqrt{s} = 14$ TeV

$R=0.4$ [siscone]
CMS measurement – no explicit jet cuts

\[p_T(W) > 50 \text{ GeV} \]

\[L_P = \frac{\vec{p}_T(\ell) \cdot \vec{p}_T(W)}{|\vec{p}_T(W)|^2} \]

Also ATLAS measurement (smaller uncertainties) using

\[\cos \theta_{2D} = \frac{\vec{p}_T^{\ell^*} \cdot \vec{p}_T^W}{|\vec{p}_T^{\ell^*}| \cdot |\vec{p}_T^W|} \]

1104.3829

1203.2165
Conclusions

- We compared $\gamma + 2,3 \text{ jets}$ to $Z + 2,3 \text{ jets}$ for cuts relevant for CMS SUSY searches with 2010 and 2011 data.
- We found very similar results for the ratio, between NLO and ME+PS approximations,
- This validates the data-driven method of using $\gamma + \text{ jets}$ to calibrate the $Z + \text{ jets}$ background to the MET + jets SUSY searches.

- Left-handed W polarization can provide another handle on $W + \text{ jets}$ backgrounds, due to the charge asymmetries it induces.
- In fact, CMS [1107.1870] has used the measured lepton p_T spectrum in $W + \text{ jets}$, plus the predicted W polarization to infer the MET distribution in $W + \text{ jets}$ backgrounds to SUSY.

- Many other ratios out there to study and exploit!
Extra slides
ATLAS measurement – no explicit jet cuts

\[p_T(W) > 50 \text{ GeV} \]

\[\cos \theta_{2D} = \frac{\mathbf{p}_T^{\ell^*} \cdot \mathbf{p}_T^{W}}{\left| \mathbf{p}_T^{\ell^*} \right| \left| \mathbf{p}_T^{W} \right|} \]
Different dynamics for $W/Z + \text{jets}$ ratios for 1 jet, versus more jets

Recent ATLAS measurement of $W/Z + \text{exactly 1 jet ratio}$ 1108.4908

- strong dependence on jet p_T

First jet in $W/Z + 4 \text{ jet ratio}$:

\[p_T^V \approx p_T^{\text{jet}} \]

\[p_T^V \neq p_T^{\text{jet}} \]

- Would be nice to measure with 2,3,4 jets!
- Also, why not separate W^+ from W^-?
NLO $pp \rightarrow Z + 4\text{ jets}$, and ratio to W^{\pm}

Ita et al.
1108.2229
Ratio of W^+ to W^- rates with jets

$$R^\pm(n) \equiv \frac{\sigma(W^+ + n \text{ jets})}{\sigma(W^- + n \text{ jets})}$$

- Very small experimental systematics
- NLO QCD corrections quite small, 2% or less
- \rightarrow Intrinsic theoretical uncertainty very small.
- PDF uncertainty also \sim1-2%. Driven by PDF ratio $u(x)/d(x)$
 in well-measured valence region of moderate x.
- Sensitive to new physics (or Higgs, or top quark pairs) that produces W^\pm symmetrically
- Fraction of new physics in sample is:

$$f_{NP} = \frac{2(R_{SM}^\pm - R_{exp.}^\pm)}{(R_{SM}^\pm + 1)(R_{exp.}^\pm - 1)}$$

Kom, Stirling, 1004.3404

<table>
<thead>
<tr>
<th>n</th>
<th>QQ</th>
<th>Qg</th>
<th>gg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>73</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>70</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>67</td>
<td>8</td>
</tr>
</tbody>
</table>
$W^+ \text{ to } W^-$ ratios at NLO

<table>
<thead>
<tr>
<th>no. jets</th>
<th>$W^- \text{ LO}$</th>
<th>$W^- \text{ NLO}$</th>
<th>$W^+/W^- \text{ LO}$</th>
<th>$W^+/W^- \text{ NLO}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$1614.0(0.5)^{+208.5}_{-235.2}$</td>
<td>$2077(2)^{+40}_{-31}$</td>
<td>$1.656(0.001)$</td>
<td>$1.580(0.004)$</td>
</tr>
<tr>
<td>1</td>
<td>$264.4(0.2)^{+22.6}_{-21.4}$</td>
<td>$331(1)^{+15}_{-12}$</td>
<td>$1.507(0.002)$</td>
<td>$1.498(0.009)$</td>
</tr>
<tr>
<td>2</td>
<td>$73.14(0.09)^{+20.81}_{-14.92}$</td>
<td>$78.1(0.5)^{+1.5}_{-4.1}$</td>
<td>$1.596(0.003)$</td>
<td>$1.57(0.02)$</td>
</tr>
<tr>
<td>3</td>
<td>$17.22(0.03)^{+8.07}_{-4.95}$</td>
<td>$16.9(0.1)^{+0.2}_{-1.3}$</td>
<td>$1.694(0.005)$</td>
<td>$1.66(0.02)$</td>
</tr>
<tr>
<td>4</td>
<td>$3.81(0.01)^{+2.44}_{-1.34}$</td>
<td>$3.55(0.04)^{+0.08}_{-0.30}$</td>
<td>$1.812(0.001)$</td>
<td>$1.73(0.03)$</td>
</tr>
</tbody>
</table>

- $p_T^{\text{jet}} > 25 \text{ GeV, } |\eta^{\text{jet}}| < 3$
- $E_T^e > 20 \text{ GeV, } |\eta^e| < 2.5$
- $E_T^V > 20 \text{ GeV, } M_T^{W'} > 20 \text{ GeV}$
- $R = 0.5 \text{ [anti-}k_T\text{]}$

- Huge scale dependence at LO cancels in ratio
- Small corrections from LO \rightarrow NLO
- Increases with n due to increasing x