NLO Assistance to LHCsearches
with Complex Final Statés
uising BlackHat aná Shérpa

Mance Dixon (SLAC)

for the BlackHat collaboration Z,Bern, LD, G. Diana, F. Febres Cordero, S. Hoghe, H. fta, D. Kosower, D. Maître, K. Ozeren

ICHEP
Melbourne, Australia July 5, 2012

Classic SUSY dark matter signature \rightarrow Multiple jets + missing energy (+ lepton(s)?)

In models such as supersymmetry, heavy produced particles (colored) decay rapidly to stable Weakly Interacting Massive Particle (WIMP) plus jets
\rightarrow Missing transverse energy MET + 4 jets

Irreducible Standard Model Background

- MET + 4 jets from

$$
\begin{gathered}
\mathrm{pp} \rightarrow Z+4 \text { jets, } \\
Z \rightarrow v v
\end{gathered}
$$

- Neutrinos also weakly interacting, escape detector.
- Also large background from $\mathrm{pp} \rightarrow W+4$ jets,

$$
W \rightarrow l v
$$

($\sim 10 \mathrm{x} Z \rightarrow \nu v$ rate)

- if you lose the charged lepton
(- or if you want a lepton)
- Motivates theoretical and experimental study of $V+n$ jets at Tevatron and LHC.
- Talks in this session by Strauss, Mesropian, Beauchemin, Lenzi, Ganguli, Kosower, Schönherr

Recent progress on V + jets at NLO

MCFM: $V+0,1,2$ jets Campbell, Ellis, hep-ph/0202176
Rocket: $W+3$ jets Ellis, Melnikov, Zanderighi, 0901.4101, 0906.1445

```
Blackhat+Sherpa: Berger, Bern, LD, Diana, Febres Cordero, Forde,
Gleisberg, Höche, Ita, Kosower, Maître, Ozeren
W+3 jets 0902.2760,0907.1984
Z + 3 jets 1004.1659
W+4 jets 1009.2338
Z + 4 jets 1108.2229
W+5 jets 12mm.nnnn
```

- Could try to use such predictions directly for backgrounds to experimental searches.
- However, it is generally safer to use data-driven techniques

Data Driven Techniques

- Measure process "close" to the one you want to estimate. (Possibly the same process in a different kinematic region.)
- Rely on theory only for ratio of desired process to measured one.
- Ratios can be considerably less sensitive to:
- perturbative uncertainties
- shower + nonperturbative effects
- jet energy scale
- pdf uncertainties
- Nevertheless, useful to have at NLO as well as LO+shower.
- Examples of $V+$ jets ratios:
- [W $+n$ jets]/[$Z+n$ jets]
- $\quad\left[W^{+}+\mathrm{n} j e t s\right] /\left[W^{-}+\mathrm{n} j e t s\right]$
- $[\gamma+n$ jets $] /[Z+n$ jets]
- W polarization fractions
- [V + n jets]/[$V+(n-1)$ jets]

$\gamma+$ jets for $\quad Z(\rightarrow v v)+n$ jets

- CMS [CMS PAS SUS-08-002, SUS-10-005, 1106.4503] and ATLAS [1107.2803, 1109.6572] both use $\gamma+$ jets to "calibrate" $Z(\rightarrow \nu v)+$ jets SUSY background.
- High rate compared to $Z\left(\rightarrow^{+} l^{-}\right)$, relatively clean.
- But: How much does a γ behave like a Z ?
- E.g., photon-quark collinear pole is cut off by Z mass in the Z case. Does this make much difference?

NLO $(Z+2$ jets $) /(\gamma+2$ jets $)$

- Computed $(Z+2$ jets) $/(\gamma+2$ jets $)$ as a function of various kinematic variables, 3 different ways:
- LO (just for reference)
- NLO (probably the most reliable)
- LO+shower (ME+PS) - to estimate NLO error, and because it is similar to what CMS/ATLAS rely on.
- Traditional method of varying renormalization and factorization scales does not provide useful uncertainty estimate for ratios of similar quantities
- We used a "Frixione" photon isolation to simplify the NLO theory, but checked that it's within $\sim 1 \%$ of CMS's isolation cone

($Z+2$ jets)/ $(\gamma+2$ jets) distributions

- Azimuthal angle distribution, between MET vector and p_{T} vector of $1^{\text {st }}, 2^{\text {nd }}$ jets

- LO distribution wrong - kinematics too restrictive. NLO and ME+PS agree to within about 10% in Z / γ ratio.

$\mathrm{NLO}(Z+3$ jets $) /(\gamma+3$ jets $)$

- Most events in CMS samples have at least 3 jets
- For 2011 data, new (tighter) kinematic cuts

NLO ($\gamma+3$ jets $) /(Z+3$ jets $)$ results

Set	Prediction	$Z+3$-jet $/ \gamma+3$-jet	$Z+2$-jet $/ \gamma+2$-jet	ratio
4	LO	$0.215(0.001)$	$0.2336(0.0003)$	$0.922(0.003)$
	$\mathrm{ME}+\mathrm{PS}$	$0.194(0.003)$	$0.213(0.002)$	$0.908(0.01)$
	NLO	$0.209(0.003)$	$0.215(0.001)$	$0.973(0.01)$
5	LO	$0.245(0.001)$	$0.257(0.001)$	$0.952(0.01)$
	$\mathrm{ME}+\mathrm{PS}$	$0.230(0.004)$	$0.239(0.004)$	$0.961(0.02)$
	NLO	$0.242(0.01)$	$0.246(0.002)$	$0.981(0.02)$
6	LO	$0.220(0.002)$	$0.232(0.001)$	$0.948(0.01)$
	$\mathrm{ME}+\mathrm{PS}$	$0.218(0.004)$	$0.232(0.003)$	$0.940(0.02)$
	NLO	$0.222(0.01)$	$0.224(0.002)$	$0.988(0.03)$
7	LO	$0.257(0.003)$	$0.259(0.001)$	$0.992(0.01)$
	$\mathrm{ME}+\mathrm{PS}$	$0.244(0.01)$	$0.261(0.003)$	$0.935(0.02)$
	NLO	$0.254(0.01)$	$0.255(0.003)$	$0.993(0.03)$

BH+S, 1206.nnnn

ME+PS, NLO always within 10\%
pdf and other uncertainties 5\% or less

Validates this method of estimating background
L. Dixon NLO for Searches July 5, 2012

ICHEP Melbourne

W^{+}and W^{-}"differ" at LHC: polarized same way [left-handed]

Helicity frame:

$$
\begin{aligned}
\frac{1}{\sigma} \frac{d \sigma}{d \cos \theta^{*}} & =\frac{3}{8}\left(1 \mp \cos \theta^{*}\right)^{2} f_{L} \\
& +\frac{3}{8}\left(1 \pm \cos \theta^{*}\right)^{2} f_{R} \\
& +\frac{3}{4} \sin ^{2} \theta^{*} f_{0}
\end{aligned}
$$

L. Dixon NLO for Searches July 5, 2012

ICHEP Melbourne

Leptonic E_{T} in $W^{ \pm}+3$ jets

0907.1984

W^{+} / W^{-}transverse lepton ratios are skewed because they are analyzing a large left-handed W polarization at large $\mathrm{p}_{\mathrm{T}}(W)$

Origin of W polarization at LHC at large $\mathrm{p}_{\mathrm{T}}(W)$

$u g \rightarrow W^{+} d$ dominates due to pdfs at a pp machine. Only 2 relevant helicity configurations:

$A^{\text {tree }} \propto \frac{\langle d \nu\rangle^{2}}{\langle u g\rangle\langle g d\rangle}$
$d \sigma \propto\left(k_{d} \cdot k_{\nu}\right)^{2}$

100\% left-handed

(in partonic CM frame)

$A^{\text {tree }} \propto \frac{[u e]^{2}}{[u g][g d]}$
$d \sigma \propto\left(k_{u} \cdot k_{e}\right)^{2}$
Mixture of polarizations
$\rightarrow 100 \%$ right-handed, but only $1 / 4$ the size
L. Dixon NLO for Searches July 5, 2012

Stable W polarization: $W+2$ jets, vs. Jet p_{T} cut

CMS measurement - no explicit jet cuts

1104.3829 $\mathrm{p}_{\mathrm{T}}(W)>50 \mathrm{GeV}$
$L_{P}=\frac{\vec{p}_{T}(\ell) \cdot \vec{p}_{T}(\mathrm{~W})}{\left|\vec{p}_{T}(\mathrm{~W})\right|^{2}}$

Also ATLAS measurement (smaller uncertainties) using

1203.2165

ICHEP Melbourne

Conclusions

- We compared $\gamma+2,3$ jets to $Z+2,3$ jets for cuts relevant for CMS SUSY searches with 2010 and 2011 data.
- We found very similar results for the ratio, between NLO and ME+PS approximations,
- This validates the data-driven method of using $\gamma+$ jets to calibrate the $Z+$ jets background to the MET + jets SUSY searches.
- Left-handed W polarization can provide another handle on $W+$ jets backgrounds, due to the charge asymmetries it induces.
- In fact, CMS [1107.1870] has used the measured lepton p_{T} spectrum in $W+$ jets, plus the predicted W polarization to infer the MET distribution in $W+$ jets backgrounds to SUSY.
- Many other ratios out there to study and exploit!

Extra slides

ATLAS measurement - no explicit jet cuts

1203.2165
$\mathrm{p}_{\mathrm{T}}(W)>50 \mathrm{GeV}$
$\cos \theta_{2 \mathrm{D}}=\frac{\vec{p}_{\mathrm{T}}^{\ell *} \cdot \vec{p}_{\mathrm{T}}^{W}}{\left|\vec{p}_{\mathrm{T}}^{\ell *}\right|\left|\vec{p}_{\mathrm{T}}^{W}\right|}$

L. Dixon NLO for Searches July 5, 2012

ICHEP Melbourne

Different dynamics for $W / Z+$ jets ratios for 1 jet, versus more jets

Recent ATLAS measurement of W / Z + exactly 1 jet ratio 1108.4908 - strong dependence on jet p_{T}

First jet in W/Z + 4 jet ratio:
flat in jet p_{T}

- Would be nice to measure with $2,3,4$ jets!
- Also, why not separate W^{+}from W^{-}?

NLO $p p \rightarrow Z+4$ jets, and ratio to $W^{ \pm}$

Ita et al.
1108.2229
L. Dixon NLO for Searches July 5, 2012

ICHEP Melbourne

Ratio of W^{+}to W^{-}rates with jets

Kom, Stirling, 1004.3404

$$
R^{ \pm}(n) \equiv \frac{\sigma\left(W^{+}+n \text { jets }\right)}{\sigma\left(W^{-}+n \text { jets }\right)}
$$

- Very small experimental systematics
- NLO QCD corrections quite small, 2% or less
- \rightarrow Intrinsic theoretical uncertainty very small.
- PDF uncertainty also $\sim 1-2 \%$. Driven by PDF ratio

$$
u(x) / d(x)
$$

in well-measured valence region of moderate x.

- Sensitive to new physics (or Higgs, or top quark pairs) that produces $W^{ \pm}$symmetrically
- Fraction of new physics in sample is:

$$
f_{\mathrm{NP}}=\frac{2\left(R_{\mathrm{SM}}^{ \pm}-R_{\text {exp. }}^{ \pm}\right)}{\left(R_{\mathrm{SM}}^{ \pm}+1\right)\left(R_{\text {exp. }}^{ \pm}-1\right)}
$$

L. Dixon NLO for Searches July 5, 2012

ICHEP Melbourne

W^{+}to W^{-}ratios at NLO

$B H+S, 1009.2338$

no. jets	$W^{-} \mathrm{LO}$	$W^{-} \mathrm{NLO}$	$W^{+} / W^{-} \mathrm{LO}$	$W^{+} / W^{-} \mathrm{NLO}$
0	$1614.0(0.5)_{-235.2}^{+208.5}$	$2077(2)_{-31}^{+40}$	$1.656(0.001)$	$1.580(0.004)$
1	$264.4(0.2)_{-21.4}^{+22.6}$	$331(1)_{-12}^{+15}$	$1.507(0.002)$	$1.498(0.009)$
2	$73.14(0.09)_{-14.92}^{+20.81}$	$78.1(0.5)_{-4.1}^{+1.5}$	$1.596(0.003)$	$1.57(0.02)$
3	$17.22(0.03)_{-4.95}^{+8.07}$	$16.9(0.1)_{-1.3}^{+0.2}$	$1.694(0.005)$	$1.66(0.02)$
4	$3.81(0.01)_{-1.34}^{+2.44}$	$3.55(0.04)_{-0.30}^{+0.08}$	$1.812(0.001)$	$1.73(0.03)$

$p_{T}^{\text {jet }}>25 \mathrm{GeV},\left|\eta^{\text {jet }}\right|<3$
$E_{T}^{e}>20 \mathrm{GeV},\left|\eta^{e}\right|<2.5$
$E_{T}^{v}>20 \mathrm{GeV}, M_{T}^{W}>20 \mathrm{GeV}$
$R=0.5\left[\right.$ anti- $\left.k_{T}\right]$

- Huge scale dependence at LO cancels in ratio
- Small corrections from LO \rightarrow NLO
- Increases with n due to increasing x

L. Dixon NLO for Searches July 5, 2012

ICHEP Melbourne

