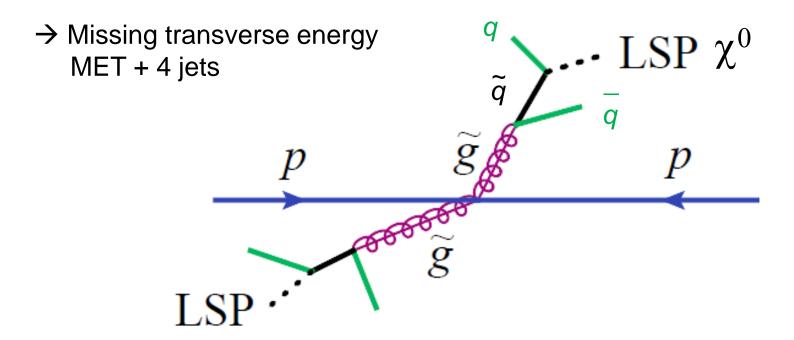
NLO Assistance to LHC Searches with Complex Final States using BlackHat and Sherpa

Lance Dixon (SLAC)

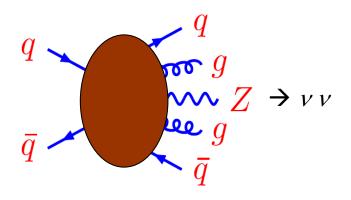
for the **BlackHat** collaboration Z. Bern, LD, G. Diana, F. Febres Cordero, S. Höche, H. Ita, D. Kosower, D. Maître, K. Ozeren


ICHEP

Melbourne, Australia July 5, 2012

Classic SUSY dark matter signature Multiple jets + missing energy (+ lepton(s)?)

In models such as supersymmetry, heavy produced particles (colored) decay rapidly to stable Weakly Interacting Massive Particle (WIMP) plus jets


Irreducible Standard Model Background

MET + 4 jets from

$$pp \rightarrow Z + 4 \text{ jets},$$

 $Z \rightarrow \nu \nu$

- Neutrinos also weakly interacting, escape detector.
- Also large background from

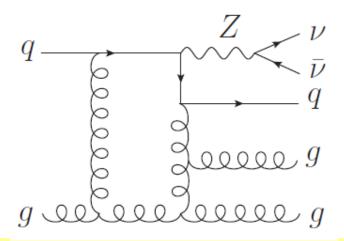
pp
$$\rightarrow$$
 W + 4 jets,
W \rightarrow lv
(~ 10x $Z \rightarrow vv$ rate)
- if you lose the charged lepton
(- or if you want a lepton)

- Motivates theoretical and experimental study of V + n jets at Tevatron and LHC.
- Talks in this session by Strauss, Mesropian, Beauchemin, Lenzi, Ganguli, Kosower, Schönherr

Recent progress on V + jets at NLO

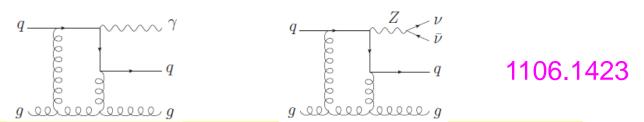
MCFM: V + 0,1,2 jets Campbell, Ellis, hep-ph/0202176

Rocket: W + 3 jets Ellis, Melnikov, Zanderighi, 0901.4101, 0906.1445

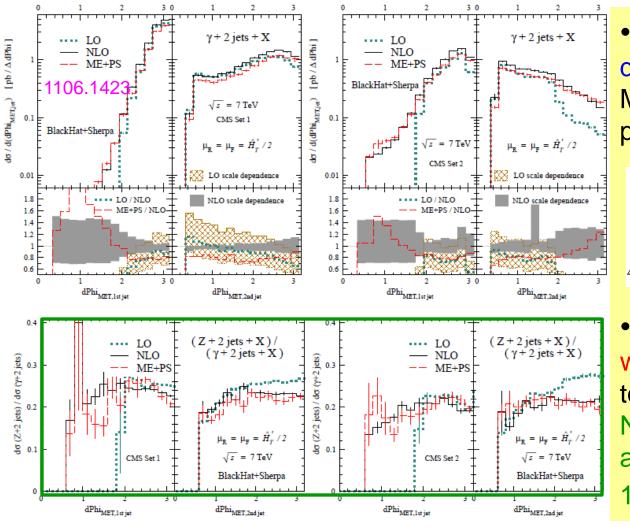

Blackhat+Sherpa: Berger, Bern, LD, Diana, Febres Cordero, Forde, Gleisberg, Höche, Ita, Kosower, Maître, Ozeren W+3 jets 0902.2760, 0907.1984 Z+3 jets 1004.1659 W+4 jets 1009.2338 Z+4 jets 1108.2229 W+5 jets 12mm.nnnn

- Could try to use such predictions directly for backgrounds to experimental searches.
- However, it is generally safer to use data-driven techniques

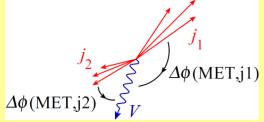
Data Driven Techniques


- Measure process "close" to the one you want to estimate.
 (Possibly the same process in a different kinematic region.)
- Rely on theory only for ratio of desired process to measured one.
- Ratios can be considerably less sensitive to:
 - perturbative uncertainties
 - shower + nonperturbative effects
 - jet energy scale
 - pdf uncertainties
- Nevertheless, useful to have at NLO as well as LO+shower.
- Examples of *V* + jets ratios:
- [W + n jets]/[Z + n jets]
- $[W^+ + n \text{ jets}]/[W^- + n \text{ jets}]$
- $[\gamma + n \text{ jets}]/[Z + n \text{ jets}]$
- *W* polarization fractions
- [V + n jets]/[V + (n-1) jets]

 γ + jets for $Z(\rightarrow \nu\nu)$ + n jets

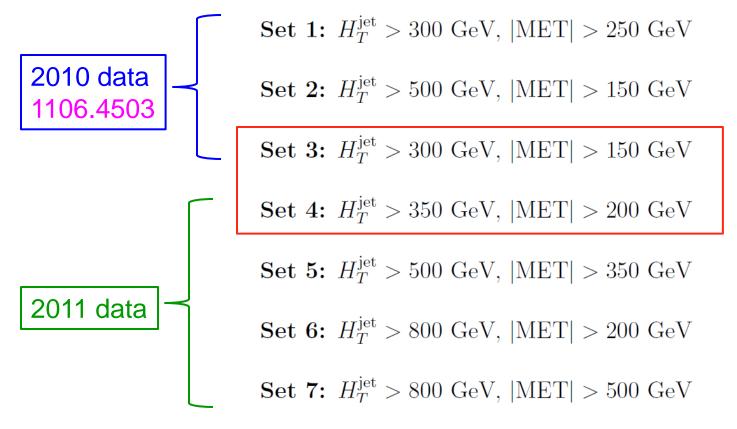

- CMS [CMS PAS SUS-08-002, SUS-10-005, 1106.4503] and ATLAS [1107.2803, 1109.6572] both use γ + jets to "calibrate" $Z(\rightarrow \nu\nu)$ + jets SUSY background.
- High rate compared to $Z(\rightarrow l^+l^-)$, relatively clean.
- But: How much does a γ behave like a Z?
- *E.g.*, photon-quark collinear pole is cut off by Z mass in the Z case. Does this make much difference?

NLO $(Z + 2 \text{ jets})/(\gamma + 2 \text{ jets})$



- Computed $(Z + 2 \text{ jets})/(\gamma + 2 \text{ jets})$ as a function of various kinematic variables, 3 different ways:
- LO (just for reference)
- NLO (probably the most reliable)
- LO+shower (ME+PS) to estimate NLO error, and because it is similar to what CMS/ATLAS rely on.
- Traditional method of varying renormalization and factorization scales does not provide useful uncertainty estimate for ratios of similar quantities
- We used a "Frixione" photon isolation to simplify the NLO theory, but checked that it's within ~1% of CMS's isolation cone

$(Z+2 \text{ jets})/(\gamma+2 \text{ jets})$ distributions


 Azimuthal angle distribution, between MET vector and p_T vector of 1st, 2nd jets

LO distribution
 wrong – kinematics
 too restrictive.
 NLO and ME+PS
 agree to within about
 10% in Z/γ ratio.

NLO $(Z + 3 \text{ jets})/(\gamma + 3 \text{ jets})$

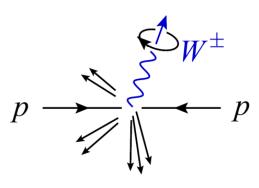
- Most events in CMS samples have at least 3 jets
- For 2011 data, new (tighter) kinematic cuts

control

regions

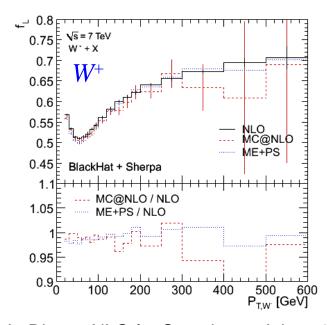
NLO $(\gamma + 3 \text{ jets})/(Z + 3 \text{ jets})$ results

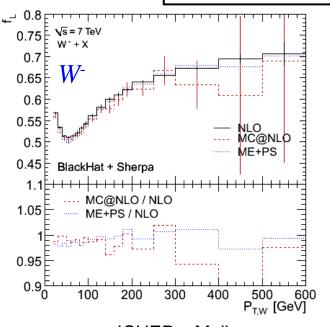
Set	Prediction	Z + 3-jet/ γ + 3-jet	Z + 2-jet/ γ + 2-jet	ratio
4	LO	0.215(0.001)	0.2336(0.0003)	0.922(0.003)
	ME+PS	0.194(0.003)	0.213(0.002)	0.908(0.01)
	NLO	0.209(0.003)	0.215(0.001)	0.973(0.01)
5	LO	0.245(0.001)	0.257(0.001)	0.952(0.01)
	ME+PS	0.230(0.004)	0.239(0.004)	0.961(0.02)
	NLO	0.242(0.01)	0.246(0.002)	0.981(0.02)
	LO	0.220(0.002)	0.232(0.001)	0.948(0.01)
6	ME+PS	0.218(0.004)	0.232(0.003)	0.940(0.02)
	NLO	0.222(0.01)	0.224(0.002)	0.988(0.03)
7	LO	0.257(0.003)	0.259(0.001)	0.992(0.01)
	ME+PS	0.244(0.01)	0.261(0.003)	0.935(0.02)
	NLO	0.254(0.01)	0.255(0.003)	0.993(0.03)


BH+S, 1206.nnnn

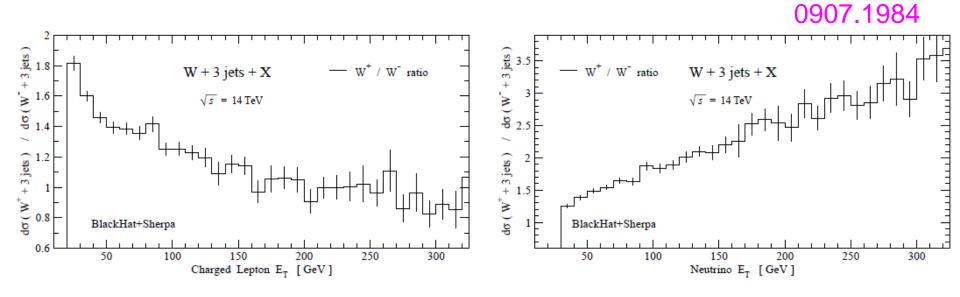
ME+PS, NLO always within 10%

pdf and other uncertainties 5% or less

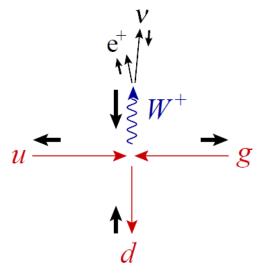

Validates this method of estimating background


W^+ and W^- "differ" at LHC: polarized same way [left-handed]

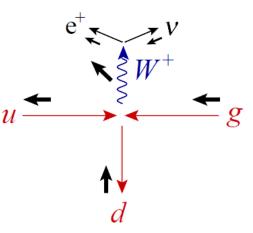
Helicity frame:


$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta^*} = \frac{3}{8} (1 \mp \cos\theta^*)^2 f_L$$
$$+ \frac{3}{8} (1 \pm \cos\theta^*)^2 f_R$$
$$+ \frac{3}{4} \sin^2\theta^* f_0$$

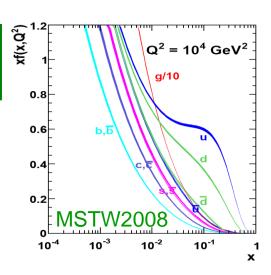
ICHEP Melbourne 1103.5445


Leptonic E_T in $W^{\pm} + 3$ jets

 W^+/W^- transverse lepton ratios are skewed because they are analyzing a large left-handed W polarization at large $p_T(W)$


Origin of W polarization at LHC at large $p_{T}(W)$

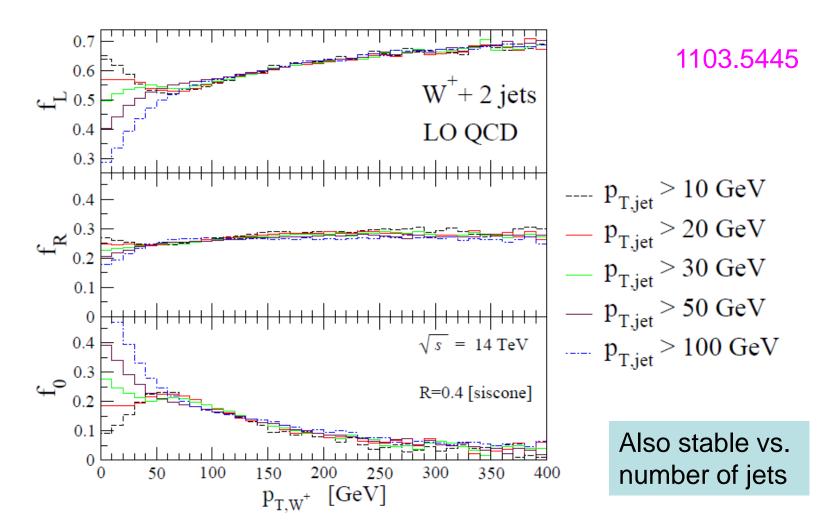
 $ug \rightarrow W^{+}d$ dominates due to pdfs at a pp machine. Only 2 relevant helicity configurations:



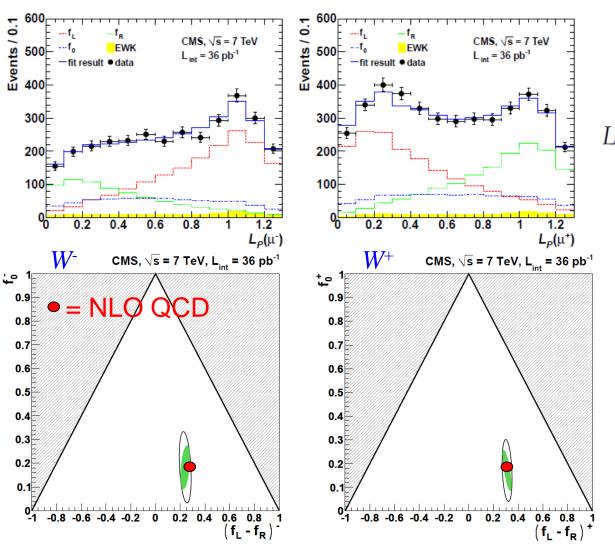
$$A^{ ext{tree}} \propto rac{\langle d \,
u
angle^2}{\langle u \, g
angle \langle g \, d
angle} \ d\sigma \propto (k_d \cdot k_
u)^2$$

100% left-handed (in partonic CM frame)

$$A^{ ext{tree}} \propto rac{[u\,e]^2}{[u\,g][g\,d]}$$
 $d\sigma \propto (k_u \cdot k_e)^2$



1103.5445


Mixture of polarizations

→ 100% right-handed, but only ¼ the size

Stable W polarization: W + 2 jets, vs. Jet p_T cut

CMS measurement – no explicit jet cuts

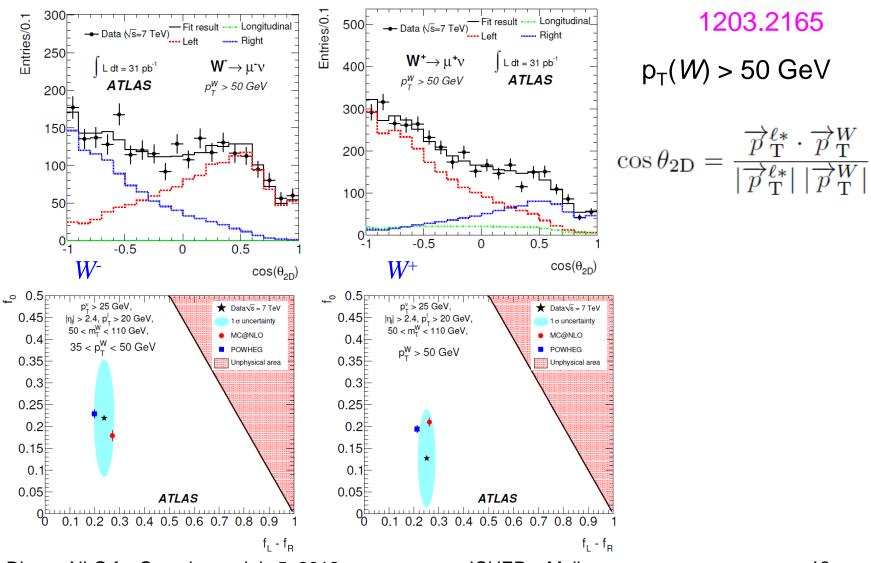
1104.3829

 $p_T(W) > 50 \text{ GeV}$

$$L_P = \frac{\vec{p}_T(\ell) \cdot \vec{p}_T(W)}{|\vec{p}_T(W)|^2}$$

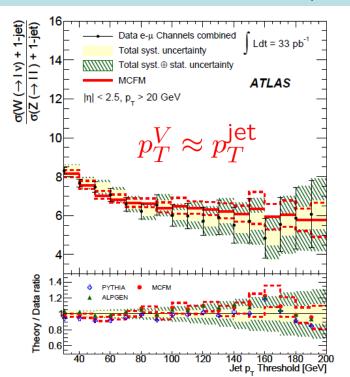
Also ATLAS measurement (smaller uncertainties) using

$$\cos \theta_{2D} = \frac{\overrightarrow{p}_{T}^{\ell*} \cdot \overrightarrow{p}_{T}^{W}}{|\overrightarrow{p}_{T}^{\ell*}| |\overrightarrow{p}_{T}^{W}|}$$

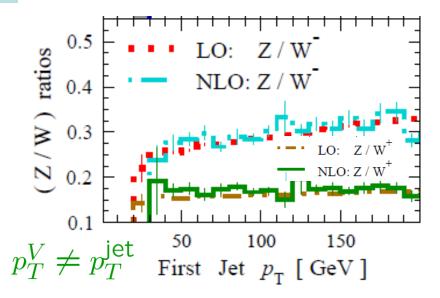

1203.2165

Conclusions

- We compared γ + 2,3 jets to Z + 2,3 jets for cuts relevant for CMS SUSY searches with 2010 and 2011 data.
- We found very similar results for the ratio, between NLO and ME+PS approximations,
- This validates the data-driven method of using γ + jets to calibrate the Z + jets background to the MET + jets SUSY searches.
- Left-handed W polarization can provide another handle on W+ jets backgrounds, due to the charge asymmetries it induces.
- In fact, CMS [1107.1870] has used the measured lepton p_T spectrum in W + jets, plus the predicted W polarization to infer the MET distribution in W + jets backgrounds to SUSY.
- Many other ratios out there to study and exploit!

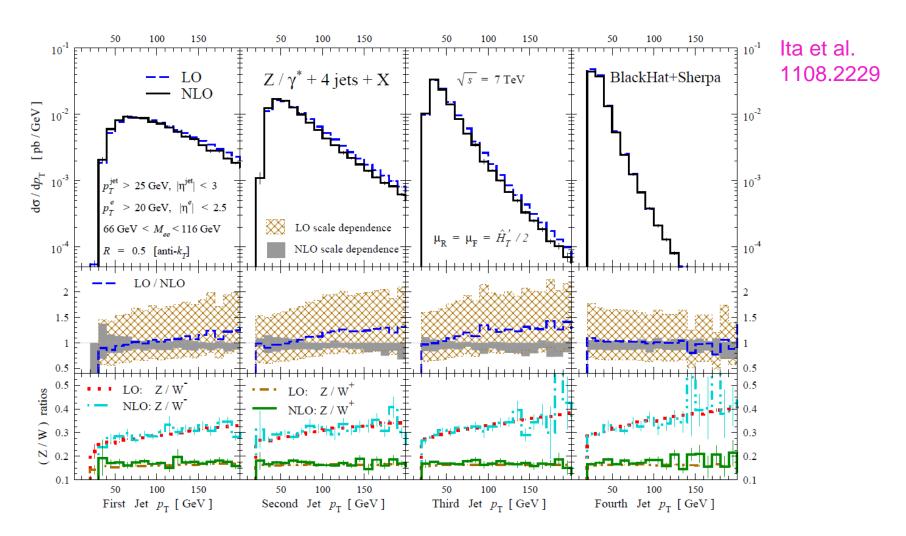

Extra slides

ATLAS measurement – no explicit jet cuts



Different dynamics for W/Z + jets ratios for 1 jet, versus more jets

Recent ATLAS measurement of W/Z + exactly 1 jet ratio 1108.4908 – strong dependence on jet p_T



First jet in W/Z + 4 jet ratio: \sim flat in jet p_T

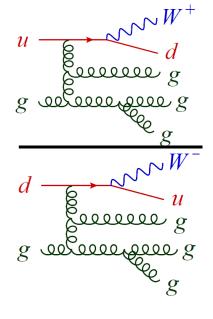
- Would be nice to measure with 2,3,4 jets!
- Also, why not separate W⁺ from W⁻?

NLO $pp \rightarrow Z+4$ jets, and ratio to W^{\pm}

Ratio of W^+ to W^- rates with jets

Kom, Stirling, 1004.3404

$$R^{\pm}(n) \equiv \frac{\sigma(W^{+} + n \text{ jets})}{\sigma(W^{-} + n \text{ jets})}$$

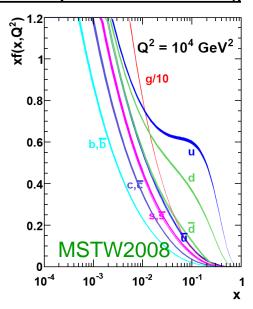

- Very small experimental systematics
- NLO QCD corrections quite small, 2% or less
- → Intrinsic theoretical uncertainty very small.
- PDF uncertainty also ~1-2%. Driven by PDF ratio $\frac{u(x)}{d(x)}$

in well-measured valence region of moderate x.

- Sensitive to new physics (or Higgs, or top quark pairs)
 that produces W[±] symmetrically
- Fraction of new physics in sample is:

$$f_{\text{NP}} = \frac{2(R_{\text{SM}}^{\pm} - R_{\text{exp.}}^{\pm})}{(R_{\text{SM}}^{\pm} + 1)(R_{\text{exp.}}^{\pm} - 1)}$$

n	QQ	Qg	gg
0	100	0	0
1	18	82	0
2	21	73	6
3	23	70	7
4	25	67	8


W^+ to W^- ratios at NLO

BH+S, 1009.2338

no. jets	W⁻ LO	W⁻ NLO	W^+/W^- LO	W^+/W^- NLO
0	$1614.0(0.5)_{-235.2}^{+208.5}$	$2077(2)_{-31}^{+40}$	1.656(0.001)	1.580(0.004)
1	$264.4(0.2)_{-21.4}^{+22.6}$	$331(1)_{-12}^{+15}$	1.507(0.002)	1.498(0.009)
2	$73.14(0.09)^{+20.81}_{-14.92}$	$78.1(0.5)_{-4.1}^{+1.5}$	1.596(0.003)	1.57(0.02)
3	$17.22(0.03)^{+8.07}_{-4.95}$	$16.9(0.1)_{-1.3}^{+0.2}$	1.694(0.005)	1.66(0.02)
4	$3.81(0.01)_{-1.34}^{+2.44}$	$3.55(0.04)_{-0.30}^{+0.08}$	1.812(0.001)	1.73(0.03)

$$p_T^{\text{jet}} > 25 \text{ GeV}, |\eta^{\text{jet}}| < 3$$

 $E_T^e > 20 \text{ GeV}, |\eta^e| < 2.5$
 $E_T^{\text{v}} > 20 \text{ GeV}, M_T^{\text{w}} > 20 \text{ GeV}$
 $R = 0.5 \text{ [anti-}k_T]$

- Huge scale dependence at LO cancels in ratio
- Small corrections from LO → NLO
- Increases with n due to increasing x

