Gluino Pair Production at Threshold

Peter Marquard

Institute for Theoretical Particle Physics Karlsruhe Institute of Technology

in collaboration with

M. Kauth, J.H. Kühn, M. Steinhauser

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

ICHEP 2012, Melbourne

Motivation

- If SUSY is realized the precise determination of the properties of SUSY particles is an important task
- Gluinos decay through cascades into the LSP + multiple jets → direct determination of gluino properties difficult
- Investigation of bound states of gluinos if they exist and a precise analysis of the behaviour at threshold might provide otherwise inaccessible information

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Gluino Properties

• Gluinos only have strong interactions, main decay channel ${ ilde g} o { ilde q} + q$ if kinematically allowed

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

Gluino Properties

- Gluinos only have strong interactions, main decay channel ${ ilde g} o { ilde q} + q$ if kinematically allowed
- if m_{g̃} ≤ m_{q̃} gluino decays into squarks impossible → small decay width → formation of bound states possible.

Gluino Properties

- Gluinos only have strong interactions, main decay channel ${ ilde g} o { ilde q} + q$ if kinematically allowed
- if m_{g̃} ≤ m_{q̃} gluino decays into squarks impossible → small decay width → formation of bound states possible.
- if $m_{\tilde{g}} > m_{\tilde{q}}$ then the decay $\tilde{g} \to \tilde{q} + q$ is possible \to no boundstates
- but, if gluino width $\Gamma_{\tilde{g}} = \mathcal{O}(\text{GeV})$ visible threshold effects (cmp $t\bar{t}$ system)

Gluino Properties cont'd

- Gluinos are color octetts
- Gluino pairs can form several color states according to

$$\mathbf{8}\otimes\mathbf{8}=\mathbf{1}\oplus\mathbf{8}_{S}\oplus\mathbf{8}_{A}\oplus\mathbf{10}_{A}\oplus\overline{\mathbf{10}}_{A}\oplus\mathbf{27}$$

Gluino Properties cont'd

- Gluinos are color octetts
- Gluino pairs can form several color states according to

$$8 \otimes 8 = \underbrace{1 \oplus 8_S \oplus 8_A}_{\text{attractive}} \oplus 10_A \oplus \overline{10}_A \oplus \underbrace{27}_{\text{repulsive}}$$

Gluino Properties cont'd

- Gluinos are color octetts
- Gluino pairs can form several color states according to

$$8 \otimes 8 = \underbrace{1 \oplus 8_S \oplus 8_A}_{\text{attractive}} \oplus 10_A \oplus \overline{10}_A \oplus \underbrace{27}_{\text{repulsive}}$$

- if the gluino width is small enough, gluinos may form meson-like boundstates
- Consider in the following production of gluino pairs in the threshold region

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Scenarios

Consider three MSUGRA scenarios:

• Scenario P (SPS 4):

$$m_{ ilde{g}} = 734\,{
m GeV} \quad ar{m}_{ ilde{q}} = 714\,{
m GeV} \quad \Gamma_{ ilde{g}} = 1.24\,{
m GeV} \quad ar{g} o ar{b}ar{b}$$

Scenarios

Consider three MSUGRA scenarios:

• Scenario P (SPS 4):

$$m_{\tilde{g}} = 734\,\mathrm{GeV} \quad ar{m}_{\tilde{q}} = 714\,\mathrm{GeV} \quad \Gamma_{\tilde{g}} = 1.24\,\mathrm{GeV} \quad ar{g}
ightarrow ar{b}ar{b}$$

• Scenario X:

$$m_{\tilde{g}} = 1300 \,\mathrm{GeV} \quad \bar{m}_{\tilde{q}} = 1360 \,\mathrm{GeV} \quad \Gamma_{\tilde{g}} = 1.83 \,\mathrm{GeV} \quad \tilde{g} \to \tilde{t}\bar{t}$$

Scenarios

Consider three MSUGRA scenarios:

• Scenario P (SPS 4):

$$m_{\tilde{g}} = 734 \,\mathrm{GeV} \quad ar{m}_{\tilde{q}} = 714 \,\mathrm{GeV} \quad \Gamma_{\tilde{g}} = 1.24 \,\mathrm{GeV} \quad ar{g}
ightarrow ar{b}ar{b}$$

• Scenario X:

$$m_{\tilde{g}} = 1300 \,\mathrm{GeV} \quad ar{m}_{\tilde{q}} = 1360 \,\mathrm{GeV} \quad \Gamma_{\tilde{g}} = 1.83 \,\mathrm{GeV} \quad ar{g} o ar{t}ar{t}$$

• Scenario Y:

$$m_{\tilde{g}} = 1370 \,\mathrm{GeV} \quad \bar{m}_{\tilde{q}} = 1235 \,\mathrm{GeV} \quad \Gamma_{\tilde{g}} = 10 \,\mathrm{GeV} \quad \tilde{g} \to \tilde{t}\bar{t}$$

Theoretical framework

- Threshold phenomena best described using non-relativistic QCD (NRQCD)
- Master formula for partonic cross section

$$M_{(\tilde{g}\tilde{g})}\frac{d\hat{\sigma}}{dM_{(\tilde{g}\tilde{g})}} = \mathcal{F}(PP \to \tilde{g}\tilde{g}X)\frac{1}{m_{\tilde{g}}^2}\mathrm{Im}G(M+i\Gamma)$$

- $\mathcal{F}(PP \rightarrow \tilde{g}\tilde{g}X)$ contains the hard kernel
- Threshold behaviour encoded in Green's function $G(M + i\Gamma)$
- Take into account contributions from all colour states

Green's function

Green's function can be calculated in NRQCD

$$G(M+i\Gamma) = \frac{i\nu m_{\tilde{g}}^2}{4\pi} + \frac{C^{[R]}\alpha_s(\mu)m_{\tilde{g}}^2}{4\pi} \left[\log\frac{i\mu}{2m_{\tilde{g}}v} + \psi^{(0)}(1-\kappa) + \frac{\alpha_s(\mu)}{4\pi}g_{NLO}\right], \quad \kappa = i\frac{C^{[R]}\alpha_s(\mu)}{2v}$$

perturbative Green's function has double and higher poles \rightarrow resummation

・ロト・日本・日本・日本・日本

Production Channels

Green's function sensitive to color configuration \rightarrow hard part has to be calculated for specific color states

Production Channels

Green's function sensitive to color configuration \rightarrow hard part has to be calculated for specific color states

• 1,8_S,27 $gg \rightarrow \tilde{g}\tilde{g}$ at tree level, squarks enter at 1-loop

Production Channels

Green's function sensitive to color configuration \rightarrow hard part has to be calculated for specific color states

• 1,8_S,27 $gg \rightarrow \tilde{g}\tilde{g}$ at tree level, squarks enter at 1-loop • 8_A $q\bar{q} \rightarrow \tilde{g}\tilde{g}$ at tree level, suppressed if $m_{\tilde{g}} = m_{\tilde{q}}$ $\mathcal{F}(q\bar{q} \rightarrow \tilde{g}\tilde{g}) \propto \frac{1-r}{1+r}, \quad r = m_{\tilde{q}}^2/m_{\tilde{g}}^2$

Production Channels

Green's function sensitive to color configuration \to hard part has to be calculated for specific color states

• 1,8_S,27 $gg \rightarrow \tilde{g}\tilde{g}$ at tree level, squarks enter at 1-loop • 8₄

 $egin{aligned} & qar{q}
ightarrow ilde{g} g$ at tree level, suppressed if $m_{ ilde{g}} = m_{ ilde{q}} \ & \mathcal{F}(qar{q}
ightarrow ilde{g} g) \propto rac{1-r}{1+r}, \quad r = m_{ ilde{q}}^2/m_{ ilde{g}}^2 \end{aligned}$

• 10

only accessible via real radiation at NLO $q\bar{q} \rightarrow g\tilde{g}\tilde{g}, qg \rightarrow q\tilde{g}\tilde{g}, \bar{q}g \rightarrow \bar{q}\tilde{g}\tilde{g}$

Calculation

Building blocks:

- Green's function at NLO
- Hard kernel: evaluation of the process $pp \to \tilde{g}\tilde{g}X$ at threshold in perturbation theory at NLO separately for each color configuration
- Inclusion of real radiation for all production channels @NLO to cancel infrared singularities
- Renormalization in the DR scheme
- PDFs: MSTW2008 NLO

Scenario P – differential cross section

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Scenario P – differential cross section

Scenario P – comparison with fixed order calculation

Scenario P – scale dependence

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Scenario X – differential cross section

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Scenario X – differential cross section

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Scenario X – comparison with fixed order calculation

Scenario Y – differential cross section

Scenario Y – differential cross section

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Scenario Y – comparison with fixed order calculation

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Conclusions

- gluinos form bound states if single gluino decays are suppressed
- improved analysis of threshold production of gluino pairs including NLO effects
- full color correlation taken into account
- comparison with fixed-order calculation gives a measure for the increase of the cross section due to threshold effects