Three-loop Matching Coefficient of the Vector Current

Peter Marquard

Institute for Theoretical Particle Physics
Karlsruhe Institute of Technology

in collaboration with

J. Piclum, D. Seidel and M. Steinhauser

ICHEP 2012, Melbourne
Outline

1. Introduction
2. Matching Coefficient
3. Conclusion
The matching coefficient of the vector current comprises an important building block for

- Measurement of the top-quark mass at a future linear collider
 \[\Delta M_t < 100 \text{ MeV} \]

- Measurements of the top-quark mass at hadron colliders limited by systematic errors
 \[\Delta M_t \approx 1 \text{ GeV} \]
The matching coefficient of the vector current comprises an important building block for:

1. Measurement of the top-quark mass at a future linear collider
 \[\Delta M_t < 100 \text{ MeV} \]

2. Measurements of the top-quark mass at hadron colliders limited by systematic errors
 \[\Delta M_t \approx 1 \text{ GeV} \]

3. Measurement of the bottom-quark mass from \(\Upsilon \) sum rules
The top-quark mass can be obtained from a scan of the top anti-top threshold at a linear collider

\[M_t = 175 \text{ GeV} \]
Introduction

The top-quark mass can be obtained from a scan of the top anti-top threshold at a linear collider

\[M_t = 175 \text{ GeV} \pm 200 \text{ MeV} \]
Threshold expansion \leftrightarrow effective field theories

QCD
Threshold expansion \leftrightarrow effective field theories

QCD

\downarrow

integrate out hard modes

\downarrow

non-relativistic QCD (NRQCD)
Threshold expansion \leftrightarrow effective field theories

QCD

\downarrow

integrate out hard modes

non-relativistic QCD (NRQCD)

\downarrow

integrate out soft/potential modes

potential NRQCD (PNRQCD)
Theoretical Status

two-loop: calculation done by several groups

[Hoang, Teubner; Melnikov, Yelkhovsky; Yakovlev; Beneke, Signer, Smirnov; Nagano, Ota, Sumino; Penin, Pivovarov]
Theoretical Status

two-loop: calculation done by several groups

- [Hoang, Teubner; Melnikov, Yelkhovsky; Yakovlev; Beneke, Signer, Smirnov; Nagano, Ota, Sumino; Penin, Pivovarov]

three-loop:

- matching coefficient c_V
 - n_l ✓
 - n_f ✓
 - $n_f^0 \rightarrow$ this talk

- heavy-quark potential a_3 ✓
 - [Smirnov, Smirnov, Steinhauser; Anzai, Kiy, Sumino]

- potential contributions ✓
 - [Beneke, Kiy, Schuller]

- ultrasoft contributions ✓
 - [Beneke, Kiy, Penin]
QCD vector current

\[j^\mu_v = \bar{Q} \gamma^\mu Q \]

NRQCD vector current

\[\tilde{j}^k_v = \phi^\dagger \sigma^k \chi \]

\[j^k_v = c_v \tilde{j}^k_v + \mathcal{O} \left(\frac{1}{M^2} \right) \]
QCD vector current

\[j^\mu_V = \bar{Q} \gamma^\mu Q \]

NRQCD vector current

\[\tilde{j}^k_V = \phi^\dagger \sigma^k \chi \]

\[j^k_V = c_V \tilde{j}^k_V + \frac{d_V}{6M^2} \phi^\dagger \sigma^k D^2 \chi + \cdots \]
QCD vector current

\[j^\mu_v = \bar{Q} \gamma^\mu Q \]

NRQCD vector current

\[\tilde{j}^k_v = \phi^\dagger \sigma^k \chi \]

\[j^k_v = c_v \tilde{j}^k_v + O \left(\frac{1}{M^2} \right) \]

c_v can be extracted by calculating vertex corrections involving \(j_v \) and \(\tilde{j}_v \)

\[Z_2 \Gamma_v = c_v \tilde{Z}_2 \tilde{Z}_v^{-1} \tilde{\Gamma}_v + \cdots \]
full and effective theory contain the same soft, ultra-soft and potential contributions ⇒ sufficient to calculate vertex functions at threshold

\[Z_2 \Gamma_v = c_v \tilde{Z}_2 \tilde{Z}_v^{-1} \tilde{\Gamma}_v + \cdots \]
full and effective theory contain the same soft, ultra-soft and potential contributions ⇒ sufficient to calculate vertex functions at threshold

\[Z_2 \Gamma_v = c_v \tilde{Z}_2 \tilde{Z}_v^{-1} \tilde{\Gamma}_v + \cdots \]

wave-function renormalization
(full theory) ✓
full and effective theory contain the same soft, ultra-soft and potential contributions ⇒ sufficient to calculate vertex functions at threshold

\[Z_2 \Gamma_v = c_v \tilde{Z}_2 \tilde{Z}_v^{-1} \tilde{\Gamma}_v + \cdots \]

wave-function renormalization (full theory) ✓

wave-function renormalization (effective theory) \(\tilde{Z}_2 = 1 \ ✓ \)
full and effective theory contain the same soft, ultra-soft and potential contributions ⇒ sufficient to calculate vertex functions at threshold

\[Z_2 \Gamma_v = c_v \tilde{Z}_2 \tilde{Z}_v^{-1} \tilde{\Gamma}_v + \cdots \]

- wave-function renormalization (full theory) ✓
- wave-function renormalization (effective theory) \(\tilde{Z}_2 = 1 \) ✓
- renormalization of the vector current (effective theory) ✓
full and effective theory contain the same soft, ultra-soft and potential contributions ⇒ sufficient to calculate vertex functions at threshold

\[Z_2 \Gamma_v = c_v \tilde{Z}_2 \tilde{Z}_v^{-1} \tilde{\Gamma}_v + \cdots \]

wave-function renormalization
(full theory) ✓

wave-function renormalization
(effective theory) \(\tilde{Z}_2 = 1 \ ✓ \)

renormalization of the vector current
(effective theory) ✓
Setup of the Calculation

- Feynman diagrams generated using QGRAF
- mapped onto 78 topologies using Q2E/EXP
- Feynman integrals reduced to master integrals with CRUSHER
- master integrals in different topologies have to be identified
- \(\mathcal{O}(100) \) master integrals calculated analytically/numerically using various techniques
- numerical errors added in quadrature
Calculation of Master Integrals

- some simple (propagator-type) master integrals known analytically
- others can be calculated precisely using Mellin-Barnes methods
- difficult (vertex-type) integrals calculated numerically using FIESTA (Feynman Integral Evaluation by a Sector decomposiTion Approach)

[Smirnov, Tentyukov]
Calculation of Master Integrals

- some simple (propagator-type) master integrals known analytically
- others can be calculated precisely using Mellin-Barnes methods
- difficult (vertex-type) integrals calculated numerically using \textsc{FIESTA} (Feynman Integral Evaluation by a Sector decomposition Approach)

\[\mathcal{N} \left(+ \frac{0.411236(3)}{\epsilon^2} + \frac{3.4860(1)}{\epsilon} + 34.520(2) + 339.68(4)\epsilon + \mathcal{O}(\epsilon^2) \right) \]

[Smirnov, Tentyukov]
Checks

- Renormalization constant \tilde{Z}_v of the NRQCD current can be reproduced
 - \tilde{Z}_v analytically known, $1/\epsilon$ part numerically small
 - agreement within the error estimate at the percent level
Renormalization constant \tilde{Z}_v of the NRQCD current can be reproduced
- \tilde{Z}_v analytically known, $1/\epsilon$ part numerically small
- agreement within the error estimate at the percent level

Gauge independence: terms linear in ξ vanish after renormalization
Renormalization constant \tilde{Z}_ν of the NRQCD current can be reproduced
- \tilde{Z}_ν analytically known, $1/\epsilon$ part numerically small
- agreement within the error estimate at the percent level

Gauge independence: terms linear in ξ vanish after renormalization

Change basis of master integrals and compare
Residue of the QCD two-point function

\[\Pi(q^2) \rightarrow \sum_{E \rightarrow E_n} \frac{N_c}{2m_Q} \frac{Z_n}{E_n - (E + i0)} \]
Phenomenology

Residue of the QCD two-point function

\[\Pi(q^2) \xrightarrow{E \rightarrow E_n} \frac{N_c}{2m_Q} \frac{Z_n}{E_n - (E + i0)} \]
Phenomenology

Residue of the QCD two-point function

\[\Pi(q^2) \xrightarrow{E \rightarrow E_n} \frac{N_c}{2m_Q} \frac{Z_n}{E_n - (E + i0)} \]
Phenomenology

Residue of the QCD two-point function

\[\Pi(q^2) \xrightarrow{E \rightarrow E_n} \frac{N_c}{2m_Q} \frac{Z_n}{E_n - (E + i0)} \]
Phenomenology

Residue of the QCD two-point function

\[\Pi(q^2) \xrightarrow{E \rightarrow E_n} \frac{N_c}{2m_Q} \frac{Z_n}{E_n - (E + i0)} \]
Phenomenology

Residue of the QCD two-point function

$$\Pi(q^2) \xrightarrow{E \rightarrow E_n} \frac{N_c}{2m_Q} \frac{Z_n}{E_n - (E + i0)}$$

Graph showing the variation of $Z_t(\mu)/Z_t(\mu_S)$ with μ (GeV) for different orders of approximation (LO, NLO, NNLO, NNNLO), with NNNLO (ferm.) indicated specifically.
Conclusion

- Calculated the final (?) missing piece for the complete NNNLO theory prediction for $e^+e^- \rightarrow t\bar{t}$ at threshold at a future linear collider.
- Numerical result with an error in the permille range.
- Sizable corrections, but matching coefficient alone not physical
- Full analysis and final checks of other building blocks still missing.