Three-loop Matching Coefficient of the Vector Current

Peter Marquard

Institute for Theoretical Particle Physics Karlsruhe Institute of Technology

in collaboration with

J. Piclum, D. Seidel and M. Steinhauser

ICHEP 2012, Melbourne

Outline

- Introduction
- Matching Coefficient
- 3 Conclusion

Motivation

The matching coefficient of the vector current comprises an important building block for

Measurement of the top-quark mass at a future linear collider

$$\Delta M_t < 100 \,\mathrm{MeV}$$

Measurements of the top-quark mass at hadron colliders limited by systematic errors

$$\Delta M_t \approx 1 \, \mathrm{GeV}$$

Motivation

The matching coefficient of the vector current comprises an important building block for

Measurement of the top-quark mass at a future linear collider

$$\Delta M_t < 100 \,\mathrm{MeV}$$

Measurements of the top-quark mass at hadron colliders limited by systematic errors

$$\Delta M_t \approx 1 \, \mathrm{GeV}$$

Measurement of the bottom-quark mass from ↑ sum rules

Introduction

The top-quark mass can be obtained from a scan of the top anti-top threshold at a linear collider [Martinez, Miquel '02]

 $M_t = 175 \,\mathrm{GeV}$

Introduction

The top-quark mass can be obtained from a scan of the top anti-top threshold at a linear collider [Martinez, Miquel '02]

Threshold expansion ↔ effective field theories

Threshold expansion ← effective field theories

Threshold expansion ↔ effective field theories

Theoretical Status

two-loop: calculation done by several groups

[Hoang, Teubner; Melnikov, Yelkhovsky; Yakovlev;

Theoretical Status

two-loop: calculation done by several groups

n_i √

[Hoang, Teubner; Melnikov, Yelkhovsky; Yakovlev;

Beneke, Signer, Smirnov; Nagano, Ota, Sumino; Penin, Pivovarov]

three-loop:

matching coefficient c_v

atorning occinicions of

[PM,Piclum,Seidel,Steinhauser]

• $n_f^0 \rightarrow \text{this talk}$

heavy-quark potential a₃ √

[Smirnov, Smirnov, Steinhauser; Anzai, Kiyo, Sumino]

potential contributions (√)

[Beneke,Kiyo,Schuller]

■ ultrasoft contributions

[Beneke,Kiyo,Penin]

Definition

QCD vector current

$$j_{\mathsf{v}}^{\mu} = \bar{\mathsf{Q}} \gamma^{\mu} \mathsf{Q}$$

NRQCD vector current

$$\tilde{j}_{\mathsf{v}}^{\mathsf{k}} = \phi^{\dagger} \sigma^{\mathsf{k}} \chi$$

$$j_{v}^{k} = \mathbf{c}_{v}\tilde{j}_{v}^{k} + \mathcal{O}\left(\frac{1}{M^{2}}\right)$$

Definition

QCD vector current

$$j_V^\mu = \bar{\mathsf{Q}} \gamma^\mu \mathsf{Q}$$

NRQCD vector current

$$\tilde{j}_{\mathsf{v}}^{\mathsf{k}} = \phi^{\dagger} \sigma^{\mathsf{k}} \chi$$

$$j_{v}^{k} = \mathbf{c}_{v}\tilde{j}_{v}^{k} + \frac{d_{v}}{6M^{2}}\phi^{\dagger}\sigma^{k}D^{2}\chi + \cdots$$

Definition

QCD vector current

$$j_{\mathsf{v}}^{\mu} = \bar{\mathsf{Q}} \gamma^{\mu} \, \mathsf{Q}$$

NRQCD vector current

$$\tilde{j}_{v}^{k} = \phi^{\dagger} \sigma^{k} \chi$$

$$j_{v}^{k} = \mathbf{c}_{v}\tilde{j}_{v}^{k} + \mathcal{O}\left(\frac{1}{M^{2}}\right)$$

 c_V can be extracted by calculating vertex corrections involving j_V and \tilde{j}_V

$$Z_2\Gamma_V = \mathbf{c}_V \tilde{Z}_2 \tilde{Z}_V^{-1} \tilde{\Gamma}_V + \cdots$$

full and effective theory contain the same soft, ultra-soft and potential contributions \Rightarrow sufficient to calculate vertex functions at threshold

$$Z_2\Gamma_V = \mathbf{c}_V \tilde{Z}_2 \tilde{Z}_V^{-1} \tilde{\Gamma}_V + \cdots$$

full and effective theory contain the same soft, ultra-soft and potential contributions \Rightarrow sufficient to calculate vertex functions at threshold

$$Z_2\Gamma_v = c_v \tilde{Z}_2 \tilde{Z}_v^{-1} \tilde{\Gamma}_v + \cdots$$

wave-function renormalization (full theory) \checkmark

(full theory) ✓

full and effective theory contain the same soft, ultra-soft and potential contributions \Rightarrow sufficient to calculate vertex functions at threshold

$$Z_2\Gamma_V = c_V \tilde{Z}_2 \tilde{Z}_V^{-1} \tilde{\Gamma}_V + \cdots$$
wave-function renormalization
(full theory)

wave-function renormalization (effective theory) $\tilde{Z}_2 = 1\sqrt{}$

(full theory) \checkmark

full and effective theory contain the same soft, ultra-soft and potential contributions \Rightarrow sufficient to calculate vertex functions at threshold

(effective theory) $\tilde{Z}_2 = 1\sqrt{2}$

renormalization of the vector current (effective theory)√

full and effective theory contain the same soft, ultra-soft and potential contributions \Rightarrow sufficient to calculate vertex functions at threshold

renormalization of the vector current (effective theory) $\sqrt{}$

Setup of the Calculation

- Feynman diagrams generated using QGRAF
- mapped onto 78 topologies using Q2E/EXP
- Feynman integrals reduced to master integrals with CRUSHER
- master integrals in different topologies have to be identified
- O(100) master integrals calculated analytically/numerically using various techniques
- numerical errors added in quadrature

Calculation of Master Integrals

- some simple (propagator-type) master integrals known analytically
- others can be calculated precisely using Mellin-Barnes methods
- difficult (vertex-type) integrals calculated numerically using FIESTA (Feynman Integral Evaluation by a Sector decomposition Approach)

Calculation of Master Integrals

- some simple (propagator-type) master integrals known analytically
- others can be calculated precisely using Mellin-Barnes methods
- difficult (vertex-type) integrals calculated numerically using FIESTA (Feynman Integral Evaluation by a Sector decomposition Approach)

$$= \mathcal{N}\left(+\frac{0.411236(3)}{\epsilon^2} + \frac{3.4860(1)}{\epsilon} + 34.520(2) + 339.68(4)\epsilon + \mathcal{O}(\epsilon^2)\right)$$

Checks

- Renormalization constant \tilde{Z}_{ν} of the NRQCD current can be reproduced
 - \tilde{Z}_{ν} analytically known, $1/\epsilon$ part numerically small
 - agreement within the error estimate at the percent level

Checks

- Renormalization constant \tilde{Z}_{ν} of the NRQCD current can be reproduced
 - \tilde{Z}_{ν} analytically known, $1/\epsilon$ part numerically small
 - agreement within the error estimate at the percent level
- Gauge independence: terms linear in ξ vanish after renormalization

Checks

- Renormalization constant \tilde{Z}_{ν} of the NRQCD current can be reproduced
 - \tilde{Z}_{ν} analytically known, $1/\epsilon$ part numerically small
 - agreement within the error estimate at the percent level
- Gauge independence: terms linear in ξ vanish after renormalization
- Change basis of master integrals and compare

$$\Pi(q^2) \stackrel{E \to E_n}{\longrightarrow} \frac{N_c}{2m_Q} \frac{Z_n}{E_n - (E + i0)}$$

$$\Pi(q^2) \stackrel{E \to E_n}{\longrightarrow} \frac{N_c}{2m_O} \frac{Z_n}{E_n - (E + i0)}$$

$$\Pi(q^2) \stackrel{E \to E_n}{\longrightarrow} \frac{N_c}{2m_O} \frac{Z_n}{E_n - (E + i0)}$$

$$\Pi(q^2) \stackrel{E \to E_n}{\longrightarrow} \frac{N_c}{2m_Q} \frac{Z_n}{E_n - (E + i0)}$$

$$\Pi(q^2) \stackrel{E \to E_n}{\longrightarrow} \frac{N_c}{2m_Q} \frac{Z_n}{E_n - (E + i0)}$$

$$\Pi(q^2) \stackrel{E \to E_n}{\longrightarrow} \frac{N_c}{2m_Q} \frac{Z_n}{E_n - (E + i0)}$$

Conclusion

- Calculated the final (?) missing piece for the complete NNNLO theory prediction for $e^+e^- \rightarrow t\bar{t}$ at threshold at a future linear collider.
- Numerical result with an error in the permille range.
- Sizable corrections, but matching coefficient alone not physical
- Full analysis and final checks of other building blocks still missing.