The High Intensity Future of Fermilab

Young-Kee Kim Fermilab and University of Chicago ICHEP, Melbourne July 7, 2012

The Intensity Frontier at Fermilab

The standard model is a very successful theory. But is not complete; can not answer many deep questions

The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012

‡ Fermilab

Experimental reach (model dependent)

The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012

🛟 Fermilab

Accelerator Improvement Plan (Proton Sources)

The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012

‡ Fermilab

Accelerator Improvement Plan (Proton Sources)

The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012

‡ Fermilab

Neutrino Program (this and next decades)

Image NASA

Neutrino Program (this and next decades)

Neutrino Program (this and next decades)

Muon Program (this decade)

The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012

🛟 Fermilab

Project X

Powerful (> 5 MW) and flexible (162 MHz) proton source Explore new physics in unprecedented breadth and depth Establish a versatile technical foundation for future accelerators

Argonne National Laboratory • Brookhaven National Laboratory • Fermi National Accelerator Laboratory • Lawrence Berkeley National Laboratory Pacific Northwest National Laboratory • Oak Ridge National Laboratory / SNS • SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility • Cornell University • Michigan State University • ILC/Americas Regional Team Bhaba Atomic Research Center • Raja Ramanna Center of Advanced Technology • Variable Energy Cyclotron Center • Inter University Accelerator Center

SRF Development: 1.3 GHz (ILC)

- 90 nine-cell cavities ordered; 60 received (32 from U.S. industry:16 from AES, 16 from Niowave-Roark)
- ~ 40 processed and tested, ~20 dressed
- 2 CMs built: one from a DESY kit and a second U.S. procured

The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012

SRF Development: 650 MHz

JLab built two single-cell
 β =0.61 cavities

- Six β = 0.9 single-cell cavities built by U.S. industry
- Order for six β = 0.61 (2 JLab, 2 FNAL design) single-cell cavities in industry
 - Five-cell design complete for $\beta_{G} = 0.9$ cavities
 - four 5-cell cavities on order from AES
 - two expected in FY12

Fermilab

SCRF Development: 325 MHz and 162.5 MHz

- SSR2($\beta_{G} = 0.47$) Single Spoke Resonator
 - EM design complete
 - Mechanical design in progress

SSR1 (β_G = 0.22) Single Spoke Resonator

- Initiated under HINS program \rightarrow more advanced
- 8 prototype cavities to date
 - . 3 tested as bare cavities at 2K
 - One dressed and tested at 4.8K

HWR ($\beta_{G} = 0.11$) Half Wave Resonator

- EM and mechanical design underway at ANL
- Similar to cavities & CM already manufactured by ANL

The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012

Operating Scenario for High Power Campus

<u>1 μsec period at 3 GeV</u>

 Muon pulses (12e7) 162.5 MHz, 80 nsec
 700 kW

 Kaon pulses (12e7) 27 MHz
 1540 kW

 Nuclear pulses (12e7) 13.5 MHz
 770 kW

Ion source and RFQ operate at 4.4mA; 77% of bunches are chopped @2.1MeV \Rightarrow maintain 1 mA over 1 µsec

The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012

🛟 Fermilab

Project X Injector Experiment (PXIE)

- PXIE is the centerpiece of the Project X R&D program
 - Integrated systems test for Project X front end components
- Collaboration between Fermilab, ANL, LBNL, SLAC, India

The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012

Muon Beamline & Neutrino Factory

Highest-intensity muon and neutrino source in the world

Summary

- Fermilab continues to operate most of its existing accelerators with enhanced capabilities and next generation experiments (2010s)
- Project X is a staged evolution of the best assets of the Fermilab accelerator complex with the revolution in super-conducting RF technology; Each Stage of Project X will raise many boats of the Intensity Frontier in particle physics, with a program scope of more than 20 world-leading particle physics experiments and an associated robust user community.
- A path toward a muon source for possible future Neutrino Factory and/or a Muon Collider
- Project X R&D underway with very significant investment in SCRF
 - Emphasis on the CW linac/Stage 1 components, including front end development program (PXIE)
- Significant effort is being invested in defining Project X physics programs associated with all stages

The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012

