The High Intensity Future of Fermilab

Young-Kee Kim
Fermilab and University of Chicago
ICHEP, Melbourne
July 7, 2012
The Intensity Frontier at Fermilab

The standard model is a very successful theory. But is not complete; can not answer many deep questions

The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012
The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012
diverse (tunable) and intense beams of neutrinos unmatched in the world today
Accelerator Improvement Plan (Proton Sources)

- **Muon**
 - 8 GeV
 - 120 GeV
- **LBNE**
- **NOvA**
- **MINERvA**
- **MINOS+**
- **MicroBooNE**
- **MiniBooNE**
- **Mu2e**
- **Muon g-2**

The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012
Accelerator Improvement Plan (Proton Sources)

- Main Injector
- Booster Neutrinos
- g-2
- mu2e
- Total

- NOvA
- LBNE
- MINERvA
- MINOS+

- MicroBooNE
- MiniBooNE
- 8 GeV ν
- 120 GeV ν
- 8 GeV μ
- Muon g-2
- Mu2e

Project X

R&D

Phase-1 Construction

The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012
Neutrino Program (this and next decades)
Neutrino Program (this and next decades)

NOvA (far) under construction
online 2013
(700 kW)

MINOS (far) operating
since 2005
(350 kW)

NOvA (near) online 2013
(700 kW)

MINOS (near)

MicroBooNE under construction
(LAr TPC)

The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012
Neutrino Program (this and next decades)

Developed a phased approach:
Stage 2 approval – expected by this Christmas

The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012
Muon Program (this decade)

Mu2e (muon to electron conversion)

Proton delivery

Beam Transfer

Muon Campus

Muon g-2

The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012
The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012

Illinois Acceleration Research Center (IARC)

CDF
DZero
Kaon Program
(if an opportunity arises)

$1,000 K^+ \rightarrow \pi^+ \nu \bar{\nu}$ events (SM rate $\sim 10^{-10}$)
The High Intensity Future of Fermilab, Young-Kee Kim, ICHEP, July 7, 2012

CDF
DZero
Project X site
Illinois Accel Research Center (IARC)
Kaon experiment (potential)
Project X site

Fermilab Accelerator Complex 2012

Protons
Neutrinos
Muons
Electrons
Target

Test-Beam
Fixed-Target Beamlines
ASTA
Advanced Superconducting Test Accelerator (under construction)
MTA
Muon Test Area
Muon Campus (under construction)
Booster Neutrino Beam
Main Injector and Recycler

MINOS - NOvA
To Minnesota

Tevatron (decommissioned)

Linac and Booster

Illinois Accel Research Center (IARC)

Tevice
DZero

under development
Project X

Powerful (> 5 MW) and flexible (162 MHz) proton source
Explore new physics in unprecedented breadth and depth
Establish a versatile technical foundation for future accelerators

- **3 MW CW @3 GeV**
 - for rare processes
 - muons, karons, nuclei

- **2.4 MW @60-120 GeV**
 - neutrinos

- **200 kW @8 GeV**
 - Neutrinos, muons

- **1 MW CW @1 GeV**
 - nuclei (EDMs, nuclear energy)

Neutrinos to LBNE

Transfer into Main Injector & Recycler

8 GeV Pulsed Proton Beam
Project X
Reference Design
3 MW @ 3 GeV
200 kW @ 8 GeV
2.4 MW @ 120 GeV

Beta = 0.11
Beta = 0.22 ~ 0.4
Beta = 0.61 ~ 0.9

Muons
Nuclei
Kaons

Beam Transport to Main Injector and Neutrino Beamlines

Scale 400 Feet
Service Buildings

1.3 GHz Cryomodule
325 MHz Cryomodule
162.5 MHz Cryomodule

Radio Frequency Quadrupole
H- Ion Source
SRF Development: 1.3 GHz (ILC)

- 90 nine-cell cavities ordered; 60 received (32 from U.S. industry: 16 from AES, 16 from Niowave-Roark)
- ~40 processed and tested, ~20 dressed
- 2 CMs built: one from a DESY kit and a second U.S. procured
SRF Development: 650 MHz

- JLab built two single-cell \(\beta = 0.61 \) cavities

- Six \(\beta = 0.9 \) single-cell cavities built by U.S. industry

- Order for six \(\beta = 0.61 \) (2 JLab, 2 FNAL design) single-cell cavities in industry

- Five-cell design complete for \(\beta_G = 0.9 \) cavities
 - four 5-cell cavities on order from AES
 - two expected in FY12
SCRF Development: 325 MHz and 162.5 MHz

- **SSR2** ($\beta_G = 0.47$) Single Spoke Resonator
 - EM design complete
 - Mechanical design in progress

SSR1 ($\beta_G = 0.22$) Single Spoke Resonator
- Initiated under HINS program → more advanced
- 8 prototype cavities to date
 - 3 tested as bare cavities at 2K
 - One dressed and tested at 4.8K

HWR ($\beta_G = 0.11$) Half Wave Resonator
- EM and mechanical design underway at ANL
- Similar to cavities & CM already manufactured by ANL
Operating Scenario for High Power Campus

<table>
<thead>
<tr>
<th>Period</th>
<th>Frequency</th>
<th>Duration</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 μsec</td>
<td>3 GeV</td>
<td>162.5 MHz</td>
<td>80 nsec</td>
</tr>
<tr>
<td>1 μsec</td>
<td>27 MHz</td>
<td>2.1 MeV</td>
<td>1 mA</td>
</tr>
<tr>
<td>1 μsec</td>
<td>13.5 MHz</td>
<td>770 kW</td>
<td></td>
</tr>
</tbody>
</table>

Ion source and RFQ operate at 4.4mA; 77% of bunches are chopped @2.1MeV
⇒ maintain 1 mA over 1 μsec
Project X Injector Experiment (PXIE)

- PXIE is the centerpiece of the Project X R&D program
 - Integrated systems test for Project X front end components

- Collaboration between Fermilab, ANL, LBNL, SLAC, India
Muon Beamline & Neutrino Factory

Highest-intensity muon and neutrino source in the world
The High Intensity Future of Fermilab,
Young-Kee Kim, ICHEP, July 7, 2012

Muon Collider
The first collider of this kind
Summary

- Fermilab continues to operate most of its existing accelerators with enhanced capabilities and next generation experiments (2010s)

- Project X is a staged evolution of the best assets of the Fermilab accelerator complex with the revolution in super-conducting RF technology; Each Stage of Project X will raise many boats of the Intensity Frontier in particle physics, with a program scope of more than 20 world-leading particle physics experiments and an associated robust user community.

- A path toward a muon source for possible future Neutrino Factory and/or a Muon Collider

- Project X R&D underway with very significant investment in SCRF
 - Emphasis on the CW linac/Stage 1 components, including front end development program (PXIE)

- Significant effort is being invested in defining Project X physics programs associated with all stages