Top quark pair production cross section at CMS

A.Y. Rodríguez-Marrero on behalf of the CMS Collaboration

Instituto de Física de Cantabria (CSIC-UC)

$36^{\rm th}$ International Conference on High Energy Physics, \$4-11\$ July 2012

イロト イポト イヨト イヨ

Top Pair Production and Decay at the LHC

- Top pair production happens via gluon fusion (mainly), and $q\bar{q}$ anihilation • approx. NNLO: $\sigma_{t\bar{t}}(LHC@7TeV) = 163 \text{ pb}, \sigma_{t\bar{t}}(LHC@8TeV) = 225 \text{ pb}$
- Top quark decays almost exclusively via the W decay

(日) (同) (三) (三)

• Measurements done according to the decay channel

Top Pair Branching Fractions

ELE NOR

To be submitted to JHEP (update of CMS-TOP-11-005)

- Require 2 OS isolated and high-pT leptons, veto Z-mass region for ee & $\mu\mu$, \geq 2 jets, minimum E_{T}^{miss}
- DY and non-W/Z lepton backgrounds estimated from data
- Profile likelihood fit of a 2-dimensional space of the jet multiplicity, and the multiplicity of b-tagged jets
- Cross-check: cut-based analysis performed after requiring ≥ 1 b-tagged jet in three categories ee, e μ , $\mu\mu$; combined using BLUE^a

^aL. Lyons et al., Nucl. Instrum. Meth. A 270 (1988) 110

 $\sigma_{t\bar{t}} = 161.9 \pm 2.5 (\text{stat.})^{+5.1}_{-5.0} (\text{syst.}) \pm 3.6 (\text{lumi}) \text{ pb}, \ \delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} \sim 4.2\%$

Main systematics: lepton efficiencies \sim 2%, jet energy scale \sim 2%

A.Y. Rodríguez-Marrero (IFCA)

First measurement in dilepton final states containing a τ !

arXiv:1203.6810, submitted to Phys.Rev.D

- Require 1 isolated and high-pT lepton, ≥ 2 jets, minimum E_T^{miss} , 1 hadronically decaying τ lepton, and ≥ 1 b-tagged jet
- Hadronic tau decays reconstructed with the HPS algorithm
- Tau-misidentified leptons determined from data using QCD events
- The reconstructed top mass indicates the consistency of the selected samples in data with the sum of signal and background
- Measurement performed in two categories $e\tau$, $\mu\tau$; combined using BLUE

< □ > < 凸∛

 $\sigma_{t\bar{t}} = 143 \pm 14 \text{(stat.)} \pm 22 \text{(syst.)} \pm 3 \text{(lumi.)} \text{ pb, } \delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} \sim 18\%$

Main systematics: au identification \sim 6%, jet energy scale \sim 6%

Lepton (e/ μ) + jets: $t\bar{t} \rightarrow \ell \nu q\bar{q}b\bar{b}$ @ 7 TeV

CMS-PAS-TOP-11-003

- Require 1 isolated high-pT μ /e, veto on additional leptons, \geq 4 jets, minimum E_{T}^{miss} , and \geq 1 b-tagged jet
- QCD multijet background shape from MC, normalization from data
- Proofile likelihood fit from secondary vertex mass, number of jets and number of b-tagged jets
- Treat some systematic uncertainties as nuisance parameters in the fit

< □ > < 凸∛

 $\sigma_{t\bar{t}} = 164.4 \pm 2.8 (stat.) \pm 11.9 (syst.) \pm 7.4 (lumi.) \text{ pb, } \delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} \sim 8.7 \%$

Main systematics: lepton efficiencies \sim 3%, jet energy scale \sim 3%

CMS-PAS-TOP-11-004

- Require \geq 4 jets: \geq 1 b-tag and 1 hadronically decaying τ lepton, minimum E_{T}^{miss}
- Hadronic tau decays reconstructed with the HPS algorithm
- QCD bakcground extracted from untagged data
- Cross section extracted from a likelihood fit of a NN output

<ロト </p>

$\sigma_{t\bar{t},m_t=172.5GeV} = 156 \pm 12 (stat.) \pm 33 (syst.) \pm 3 (lumi.) \text{ pb, } \delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} \sim 23\%$

Main systematics: au identification \sim 9%, jet energy scale \sim 11%

CMS-PAS-TOP-11-007

- Require \geq 6 jets with different high- $p_{\rm T}$ thresholds, \geq 2 b-tag
- Channel fully dominated by QCD, b-tagging is essential
- Tag rate function R(p_T, η) used as a weight on the untagged data sample
- Cross section extracted from an unbinned likelihood fit to the top quark mass

イロト イヨト イヨト イヨト

$\sigma_{t\bar{t}} = 136 \pm 20 (\text{stat.}) \pm 40 (\text{syst.}) \pm 8 (\text{lumi.}) \text{ pb}, \ \delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} \sim 33\%$

Main systematics: b-tagging efficiencies \sim 16%, jet energy scale \sim 14%

CMS-PAS-TOP-11-024

- Combination done using a binned maximum likelihood fit
- Includes measurements with 0.8 and 1.1 ${\rm fb}^{-1}$
- $\bullet~165.8\,\pm~2.2\,\pm~10.6\,\pm~7.8$ pb

Today's results

- Measured cross sections in agreement with each other and with approx NNLO predictions
- All measurements are now systematics limited
- Experimental uncertainty is now lower than theoretical uncertainties

CMS Preliminary, √s=7 TeV

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ELE NOR

NEW

First measurement in the dilepton channel at 8 TeV!

CMS-PAS-TOP-12-007

- Require 2 OS isolated and high-pT leptons, veto Z-mass region for ee & $\mu\mu$, ≥ 2 jets, minimum E_{T}^{miss} , ≥ 1 b-tagged jet
- DY and non-W/Z lepton backgrounds estimated from data
- Cut-based analysis performed in three categories ee, e μ , $\mu\mu$; combined using BLUE
- Very clean sample after the different selection steps

イロン イヨン イヨン イヨン

$\sigma_{t\bar{t}} = 226.8 \pm 3.1 (stat.) \pm 10.7 (syst.) \pm 10.0 (lumi.) \text{ pb, } \delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} \sim 6.6\%$

Main systematics: lepton efficiencies \sim 2%, jet energy scale \sim 3%

NEW

First measurement in the lepton + jets channel at 8 TeV!

CMS-PAS-TOP-12-006

- Require 1 isolated high- $p_{\rm T}~\mu/{\rm e},$ veto on additional leptons, \geq 4 jets, and \geq 1 b-tagged jet
- QCD multijet background shape and normalization from data
- Binned likelihood fit of the invariant mass of the b-jet and the lepton (M_{1b})
- \bullet Cross-check: uses the mass of the three-jet combination with the highest $p_{\rm T}$

• • • • • • • • • • • • •

$\sigma_{t\bar{t}} = 228.4 \pm 9.0 (\text{stat.}) \pm \frac{29.0}{26.0} (\text{syst.}) \pm 10.0 (\text{lumi.}) \text{ pb}, \ \delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} \sim 14\%$

Main systematics: b-tagging efficiencies \sim 8%, jet energy scale \sim 5%

Combination dependence with \sqrt{s}

CMS Preliminary, combination @ 8 TeV

- dilepton (CMS-PAS-TOP-12-007), and lepton + jets (CMS-PAS-TOP-12-006)
- Combined using BLUE

 $\sigma_{t\bar{t}} = 227 \pm 3$ (stat.) ± 11 (syst.) ± 10 (lumi.) pb, $\delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} \sim 7\%$

- The LHC is a top factory
- CMS has a huge physics program for top quark physics
 - follow other presentations in parallel talks at TR4
- $\sigma_{t\bar{t}}$ measurements at (almost) all the different experimental signatures @ 7 TeV
- First cross section measurements at 8 TeV:
 - first data arrived only three months ago!
- Good agreement with SM predictions at both 7 and 8 TeV
 - Starting to challenge theory predictions
- Stay tuned!
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

イロト イポト イヨト イヨ

Back-up

A.Y. Rodríguez-Marrero (IFCA)

Top production at CMS

July 5th, 2012 1 / 2

To be submitted to JHEP

- Require 2 OS isolated and high-pT leptons, veto Z-mass region for ee & $\mu\mu$, \geq 2 jets, minimum E_{T}^{miss}
- DY and non-W/Z lepton backgrounds estimated from data
- Profile likelihood fit of a 2-dimensional space of the jet multiplicity, and the multiplicity of b-tagged jets
- Cross-check: cut-based analysis performed after requiring ≥ 1 b-tagged jet in three categories ee, $e\mu$, $\mu\mu$; combined using BLUE

 $\sigma_{t\bar{t}} = 161.9 \pm 2.5 (\text{stat.})^{+5.1}_{-5.0} (\text{syst.}) \pm 3.6 (\text{lumi}) \text{ pb}, \ \delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} \sim 4.2\%$

 $\sigma_{t\bar{t},m_t} = \sigma_{t\bar{t}} - 1.29 \cdot (m_t - 172.5) - 0.02 \cdot (m_t - 172.5)^2$