Measurement of the ν_{μ} flux and inclusive charged current cross section at T2K's near detector

Melody Ravonel Salzgeber for the T2K collaboration

Content and outline

- The T2K experiment
- Rate measurement
 - Method
 - Source of uncertainties
 - Results
- Cross Section measurement
 - Method
 - Source of uncertainties
 - Results

Used to constrain *flux & cross* section in T2K oscillation fits

Model independent method in momentum and angle

more useful for validating/improving models

The T2K experiment

T2K: long baseline neutrino oscillation

- → high intensity neutrino beam (peak at 600 MeV)
- → off-axis beam
- → 30 GeV proton beam impinging on the 90 cm long graphite target.

Analysed POT (Jan 2010 - March 2011):

⇒ $POT = 10.796 \times 10^{19}$

Total Integrated V_{μ} Flux

 \rightarrow 2.09 \times 10¹² cm⁻²/POT

N280 Flux prediction with systematic errors

The off-axis near detector (ND280)

Overview of the off-axis Near Detector

Magnetized Detector (0.2 Tesla)

Time Projection Chambers (TPCs) & Fine Grain Detectors (FGDs) scintillators are the main detectors used for the analyses presented here

FGDI scintillator (FV mass ~913 kg):

- Scintillator mainly composed of carbon
 C 86%, O 3.7%, H 7.4%, Ti 1.7%, Si 1%, N 0.1%
- Provides the target mass

Run #: 4200 Evt #: 24083 Time: Sun 2010-03-21 22:33:25 JST

Charged current event candidate in the tracker region of the near detector. Muon reconstructed angle 40° and reconstructed momentum: 566 MeV/c

Particle tracking with TPCs provides:

- Very low material density
- Excellent particle identification via dE/dx
- Momentum determination through deflection in a transversal 0.2T magnetic field

Event samples and selection

The CC selection at ND280

- At least one negative track in the TPC
- The track starts in fiducial volume of the FGDI
- dE/dx compatible with the muon hypothesis

CCnQE sub-sample

= all CC selected that is not QE

CCQE sub-sample

- Only one TPC-FGD track
- No Michel electron

2354 events selected

Charge Current (CC) interaction

= all CC that is not QE

The Generators used (references)

NEUT: http://www.actaphys.u j.edu.pl/vol40/pdf/v40p2477.pdf.

GENIE: http://www.genie-mc.org/

NuWro: http://th-www.if.uj.edu.pl/acta/vol40/pdf/v40p2507.pdf

Selection performance

	Efficiency	Purity
CCQE	40%	72%
CC	50%	88%

Rate Measurement Method

Likelihood Fit at ND280

$$-2 \ln(\mathcal{L}_{ND280}) = f(N_j^{data}, V_x, V_b, V_d, \vec{s})$$

INPUT ND280 events

of reconstructed events at the near detector in the $(p-\theta)$ plane

INPUT covariances

Uncertainties from

Cross-Section (V_x)

Flux (V_b) (from Na61, proton beam monitors, etc)

Detector (V_d) (FSI included here)

Parameters to be fitted

RESULTS

used to constrain

flux & cross section

parameters in T2K

oscillation fits

Cross Section uncertainty (input for rate and xsec-meas.)

normalization uncertainties

Parameters	Energy range (GeV)	Nominal value	Error
$\overline{\text{CCQE}}$	$0.0 < E_{\nu} < 1.5$	1	11 %
CCQE	$1.5 < E_{\nu} < 3.5$	1	30~%
CCQE	$3.5 < E_{\nu}$	1	30~%
$\text{CC-}1\pi$	$0.0 < E_{\nu} < 2.5$	1.63	43~%
$\text{CC-}1\pi$	$2.5 < E_{\nu}$	1	40~%
CC-COH	$0.0 < E_{\nu}$	1	100 %
NC-oth	$0.0 < E_{\nu}$	1	30~%
$NC-1\pi^0$	$0.0 < E_{\nu}$	1.18	43%

uncertainties coming from comparison of our generator (NEUT) with external data

Parameters	Nominal value	Error
$\overline{M_A^{CCQE}}$	$1.21~{\rm GeV}$	37.2~%
M_A^{RES}	$1.16~{ m GeV}$	9.5~%
CC-oth shape	0	40 %
p_F	$217~{ m MeV/c}$	13.8~%
W_{shape}	87.7	51.7~%
pionless Δ decay	0.2	20~%

Parameters	Nominal value	Error
Spectral Function	Off (0)	100 %
$1\pi E_{\nu} \text{ shape}$	Off (0)	50 %

Energy dependent uncertainty for CC-n π and CC deep inelatic (40%/E $_{v}$)

Decay width of the resonance allowing the modification of the shape of the pion momentum in resonance interactions

20% of all Δ may decay to produce no pions in NEUT generator

Replace relativistic Fermi gas by NuWro generator spectral function

Parameter changing the shape of 1π channel below 1GeV

Systematics and results

Detector

- dominated by statistic
- main systematic uncertainty coming from out of fiducial volume background (OOFV) and momentum distortions due to magnetic field

Flux

Systematic on the flux is about 10% - comes mainly from cross-section production and secondary interactions

The Results

Much better agreement of the data with the MC

 $\frac{\text{CC selection}}{\text{Data/MC}_{\text{nom}}} = 95.5\%$

Data/ $MC_{refit} = 99.5\%$

CCQE selection

Data/ $MC_{nom} = 95.0\%$

Data/ $MC_{refit} = 99.9\%$

CCnQE selection

Data/ $MC_{nom} = 98.7\%$

 $Data/MC_{refit} = 99.4\%$

Far detector prediction

Reduction of the systematic errors of the neutrino flux at the far detector due to the ND280 measurements:

20%
10% error

Cross section parameters are constrained from fit (see result in backup)

ND280 can also do other kinds of measurements... (cross section,...)

Flux averaged cross Section Measurement Method

Flux averaged differential cross section:

Method

unfolding based on Bayes' theorem

$$U_{kj} = P(k|j) = \frac{P(j|k)P(k)}{\sum_{\alpha} P(j|\alpha)} \quad \begin{array}{l} \text{U}_{kj} = \text{ probability to} \\ \text{have an interaction in bin k,} \\ \text{when having reconstructed the event in bin j} \end{array}$$

reco. (j index)

true (k index)

Unfolding matrix and efficiency

Unfolding matrix: mostly diagonal

CC signal efficiency

Muon momentum (MeV/c)

Efficiency very low in the backward going region

Differential Cross section Results / per nucleon

T: Target, **FSI**: Final State Interaction **det**.: detector, **x-s**: cross-section, **algo**: unfolding algorithm

Flux av. Total Cross section of CC $<\sigma>_{\phi}=\frac{N_{tot}}{T\phi}$

data

$$\langle \sigma_{\rm CC} \rangle_{\phi} = (6.93 \pm 0.13(stat) \pm 0.85(syst)) \times 10^{-39} \frac{\text{cm}^2}{\text{nucleons}}$$

predicted from generators

$$\langle \sigma_{\rm CC}^{\rm NEUT} \rangle_{\phi} = 7.26 \times 10^{-39} \frac{\rm cm^2}{\rm nucleons}$$

$$\langle \sigma_{\rm CC}^{\rm GENIE} \rangle_{\phi} = 6.68 \times 10^{-39} \frac{\rm cm^2}{\rm nucleons}$$

Conclusions

- Notable improvement of the flux prediction at the T2K far detector due to the measurement at ND280
 - ▶ 20% to 10% error reduction of the predicted flux at the far detector
- The cross section results are compatible with the MC and experiments
 - The total cross section result is:

$$\langle \sigma_{\rm CC} \rangle_{\phi} = (6.93 \pm 0.13(stat) \pm 0.85(syst)) \times 10^{-39} \frac{\text{cm}^2}{\text{nucleons}}$$

- More results on cross-sections in preparation
- Preliminary results presented, publication in preparation

BACK UP

Fraction of each element

Component	С	О	Н	Ti	Si	N	Total
Scintillator bars	1.7651 ± 0.0067	0.0248 ± 0.0039	0.1468 ± 0.0006	0.0355 ± 0.0059	0	0.0010 ± 0.00004	1.973 ± 0.0104
G10	0.0196 ± 0.0015	0.0331 ± 0.0001	0.0034 ± 0.0018	0	0.0218 ± 0.0043	0.0013 ± 0.0013	0.079
Plexus MA590	0.0484 ± 0.0060	0.0215 ± 0.0027	0.0065 ± 0.0008	0	0	0.0009 ± 0.0001	0.0774 ± 0.0096
fiber	0.0155	0.00002	0.0013	0	0	0.00002	0.0169
XY module	1.849 ± 0.0092	0.0794 ± 0.0048	0.1579 ± 0.0021	0.0355 ± 0.0059	0.0218 ± 0.0043	0.0031 ± 0.0012	2.147 ± 0.0144

Table 12.12: Elemental composition of the components of a typical XY layer, in g/cm^2 of each element [136]

Flux systematic sources (summary)

sources	Max. Error	Min. Error	Norm. Error
	(%)	(%)	(%)
Kaon	16.7	0.4	0.8
Pion	6.1	0.6	5.0
Proton beam	5.1	0.2	1.1
Off-axis angle	$\boxed{5.4}$	0.1	1.6
Horn ang. align.	1.0	0.2	0.5
Horn field assym.	6.7	0.01	0.3
Cross-sec. production	7.8	4.5	6.4
Horn abs. current	1.9	0.4	0.9
Target align.	2.6	0.05	0.2
Sec. nucl. production	8.5	2.9	6.9
Total	19.6	8.9	10.9

Flux error matrix

bin 0-10 : ND280 ν_{μ}

bin 11-12: ND280 anti- ν_{μ}

bin 13-19: ND280 ν_e

bin 20-21: ND280 anti- ν_e

bin 22-32: SK ν_{μ}

bin 33-34: SK anti- ν_{μ}

bin 35-41: SK ν_e

bin 42-43: SK anti- V_e

bin 44-87: SK latest data in 2012

Detector response systematic sources (summary)

Crystomatic Empon	Data Cample	Emon size (07)
Systematic Error	Data Sample	Error size (%)
TPC track quality cut	Beam data/MC	0.1
TPC track efficiency	Beam data/MC	0.5
TPC broken track tracking efficiency	Beam data/MC	0.6
TPC Particle ID (PID)	Beam data/MC	0.1
TPC momentum scale	external data	0.51
TPC momentum distortion	special MC	1 - 7
TPC momentum resolution	Beam data/MC	2.0
TPC-FGD matching efficiency	sand $muon + cosmics$	< 1
Fiducial Mass	external measurement	0.67
Charge mis-ID	Beam data/MC	< 0.3
Michel electron tagging	\cos mics	0.49
Cosmic rays	special MC	0.1
Sand muons	special MC	1.5
Out-of-fiducial volume (OOFV) background	several samples	1 - 9
Pion reinteractions	Beam data/MC	1 - 4
Pileup	data/MC	0.24

Thursday, July 5, 2012 21

Fitted Neutrino Interaction Model Parameters

Parameter	Prior Value	Fitted Value
M_{A}^{QE} (GeV)	1.21 ± 0.45	1.19 ± 0.19
M_A^{RES} (GeV)	1.162 ± 0.110	1.137 ± 0.095
CCQE Norm. < 1.5 GeV	1.0 ± 0.11	0.941 ± 0.087
CCQE Norm. 1.5-3.5 GeV	1.0 ± 0.30	0.92 ± 0.23
CCQE Norm. > 3.5 GeV	1.0 ± 0.30	1.18 ± 0.25
CC1 π Norm. < 2.5 GeV	1.63 ± 0.43	1.67 ± 0.28
CC1 π Norm. > 2.5 GeV	1.0 ± 0.40	1.10 ± 0.30
$NC1\pi^0$ Norm.	1.19 ± 0.43	1.22 ± 0.40
Spectral Function	$0 (off) \pm 1 (on)$	0.04 ± 0.21
p_{F} (MeV/c)	217 ± 30	224 ± 24
CC Other Shape (GeV)	0.0 ± 0.4	-0.05 ± 0.35

Thursday, July 5, 2012 22

Covariances matrices (input sources)

Systematic errors

The sources

How

same input as before

FSI
Detector
Cross-Section

Flux

is obtained by

- reweighting the MC 200x decomposing the cov. matrices (Cholesky decomposition)
- the data is unfolded with the reweighted MC

error = RMS
$$\left(\widehat{N}_{t_k}^{\mathrm{rw}} - \widehat{N}_{t_k}^{(nom)} \right)$$

$$\text{error} = \text{RMS} \bigg(\frac{\widehat{N}_{t_k}^{\text{rw}}}{\phi_{\text{rw}}} - \frac{\widehat{N}_{t_k}^{(nom)}}{\phi^{(nom)}} \bigg)$$

algorithm

is obtained by unfolding a 1000 data size MC with the nominal MC

error = MEAN
$$\left(\widehat{N}_{t_k}^{(nom)} - N_{t_k}^{truth}\right)$$

error =
$$\frac{\delta T}{T}$$
 = 0.67% from measurements

Thursday, July 5, 2012 25

Systematic errors

Systematic errors

Systematic error of the algorithm

systematic error (all)

Table 17: Summary of the systematic errors. The error on the number of target (0.67 %) have been added in quadrature to the total systematic error. ϕ , det., FSI label the systematic uncertainty of the beam flux, detector response and FSI changed systematically following the covariance matrix showed in Fig. 9,11,10,12, x-s design the influence of the change of all the cross-section modeling parameter and channel rate.

$\overline{P_{\mu}}$ ((GeV/c)	$\cos \theta_{\mu}$	algo. (%)	φ (%)	x-s (%)	det. (%)	FSI (%)	syst (%)	stat (%)	tot (%)
[0.	.0, 0.4]	[-1, 0]	0.03	11.92	15.45	2.97	0.96	19.78	2.86	19.98
1.5 1		[0, 0.84]	0.10	12.82	5.44	3.70	1.23	14.49	5.03	15.34
highest		[0.84, 0.9]	0.06	13.17	10.25	2.67	1.35	16.98	9.37	19.39
contribution		[0.9, 0.94]	0.06	13.95	10.02	4.73	3.32	18.14	11.82	21.65
		[0.94, 1]	0.24	14.00	11.09	4.49	2.57	18.61	13.78	23.16
[0.	[.4, 0.5]	[-1, 0]	0.98	12.05	48.06	2.79	0.47	49.64	3.52	49.77
		[0, 0.84]	0.13	11.39	5.68	1.31	0.34	12.83	4.27	13.52
		[0.84, 0.9]	0.18	11.41	4.96	0.94	0.38	12.51	8.55	15.15
		[0.9, 0.94]	0.90	11.71	4.90	1.19	0.44	12.82	9.97	16.24
		[0.94, 1]	0.34	13.12	6.25	2.06	0.83	14.73	11.42	18.64
$\overline{0}$.5, 0.7	[-1, 0]	7.15	11.22	47.37	1.97	0.63	49.25	30.30	57.83
		[0, 0.84]	0.10	11.12	3.76	1.10	0.37	11.83	3.86	12.44
		[0.84, 0.9]	0.10	10.87	3.25	0.79	0.29	11.41	6.18	12.98
		[0.9, 0.94]	0.55	11.06	5.62	0.76	0.32	12.48	7.18	14.39
		[0.94, 1]	0.22	11.71	9.15	0.98	0.24	14.92	7.67	16.77
$\overline{0}$.7, 0.9	[-1, 0]	3.18	13.48	101.82	1.59	0.48	102.77	28.89	106.75
		[0, 0.84]	0.19	11.35	2.93	1.14	0.41	11.81	5.23	12.92
		[0.84, 0.9]	0.23	10.93	5.84	0.83	0.19	12.45	6.85	14.21
		[0.9, 0.94]	0.04	10.75	10.59	0.95	0.40	15.15	7.57	16.94
		[0.94, 1]	0.03	11.01	15.59	0.79	0.30	19.13	6.90	20.34
$\overline{}[0.0]$	9,30.0	[-1, 0]	-	-	-	-	-	-	-	-
-		[0, 0.84]	0.20	11.83	4.97	1.46	0.69	12.97	5.88	14.24
		[0.84, 0.9]	0.07	11.30	2.31	0.89	0.26	11.60	6.05	13.09
		[0.9, 0.94]	0.05	11.09	2.08	0.72	0.36	11.34	5.33	12.53
		[0.94, 1]	0.09	10.90	2.25	0.75	0.26	11.19	2.97	11.58

highest contribution

ъ т							
Run I							
Event type	CC Inclusive	CCQE enhanced	CCnQE enhanced				
CCQE	0.450 ± 0.014	0.716 ± 0.017	0.145 ± 0.015				
RES	0.212 ± 0.012	0.141 ± 0.013	0.294 ± 0.019				
DIS	0.191 ± 0.011	0.0418 ± 0.0077	0.361 ± 0.020				
СОН	0.0297 ± 0.0047	0.0175 ± 0.0051	0.0438 ± 0.0084				
NC	0.0319 ± 0.0049	0.0131 ± 0.0044	0.0534 ± 0.0093				
anti-numu	0.0110 ± 0.0029	0.0010 ± 0.0012	0.0225 ± 0.0061				
out of FGD	0.0646 ± 0.0069	0.0606 ± 0.0092	0.069 ± 0.010				
out FGD FV	0.0099 ± 0.0028	0.0091 ± 0.0037	0.0107 ± 0.0042				
]	Run II					
Event type	CC Inclusive	CCQE enhanced	CCnQE enhanced				
CCQE	0.4491 ± 0.0085	0.708 ± 0.011	0.1455 ± 0.0089				
RES	0.2138 ± 0.0070	0.1458 ± 0.0082	0.293 ± 0.011				
DIS	0.1927 ± 0.0067	0.0374 ± 0.0044	0.375 ± 0.012				
СОН	0.0282 ± 0.0028	0.0176 ± 0.0031	0.0406 ± 0.0050				
NC	0.0323 ± 0.0030	0.0144 ± 0.0028	0.0534 ± 0.0057				
anti-numu	0.0073 ± 0.0015	0.0027 ± 0.0012	0.0127 ± 0.0028				
out of FGD	0.0668 ± 0.0043	0.0644 ± 0.0057	0.0696 ± 0.0064				
out FGD FV	0.0098 ± 0.0017	0.0096 ± 0.0023	0.0099 ± 0.0025				

Table 4: Composition of the selected events for Run II for the CC-inclusive, CCQE and CCnQE enhanced samples.

Thursday, July 5, 2012 29