Results from T2K

Ken Sakashita (KEK) for T2K collaboration 2012/July/5, ICHEP 2012

1. Introduction

2. ν_e appearance analysis

We report an updated analysis of ν_e appearance using the full data set collected

3. Summary

Physics Motivation

\star Discovery of $v_{\mu} \rightarrow v_{e}$

Direct detection of neutrino flavor mixing in "appearance" mode

v_{μ} to v_{e} plays an important role to study CPV, mass hierarchy

 $P(v_{\mu} \rightarrow v_{e}) = \frac{\sin^{2}2\theta_{13}}{\sin^{2}\theta_{23}} \sin^{2}(\Delta m^{2}_{31} \text{ L/4E})$ + (CPV term)+ (matter term) ...

open a possibility to measure CP violation in lepton sector

CPV term in P($v_{\mu} \rightarrow v_{e}$) $\propto sin\theta_{12} sin\theta_{13} sin\theta_{23} sin\delta$

Neutrino mass & three flavor mixing

Mixing angle: θ_{12} , θ_{23} , θ_{13}

 $\theta_{12} = 34^\circ \pm 3^\circ \qquad \qquad \theta_{23} = 45^\circ \pm 5^\circ$

θ₁₃ measurement

 $\begin{aligned} & \sin^2 2\theta_{13} = 0.11 \ \ ^{+0.10} \ ^{-0.06} \ (\text{T2K 2011}) \\ & (\text{assuming } \delta_{\text{CP}} = 0, \ \sin^2 2\theta_{23} = 1, \ \Delta m^2_{32} = 2.4 \ \text{x 10}^{-3} \ (\text{NH})) \\ & \text{p-value for } \theta_{13} = 0 \ \text{was } 0.007 \ (2.5\sigma) \end{aligned}$

First indication of non-zero θ₁₃

Phys.Rev.Lett. 107, 041801, 2011

T2K (Tokai-to-Kamioka) experiment

T2K Main Goals:

\star Discovery of $v_{\mu} \rightarrow v_{e}$ oscillation (v_{e} appearance)

\star Precision measurement of v_{μ} disappearance

2011 ν_{μ} results : Phys.Rev. D 85, 031103(R), 2012

CP odd term in $v_{\mu} \rightarrow v_e$ **prob.** $\propto \sin \delta \cdot s_{12} \cdot s_{23} \cdot s_{13}$

* Small intrinsic v_e contamination (~1%) from μ ,K decays

π , K production is measured in CERN NA61 exp.

Phys.Rev.C84:034604(2011), Phys.Rev.C85:035210(2012)

1.0

0.5

Interaction cross-section

CCQE

CC1n NC1π

Data collected and analyzed

Data for today's talk (full data set up to now) = 3.01×10^{20} p.o.t. (18% of increase from Neutrino2012)

Near detector measurements

@280m from target

On-axis detector (INGRID)

v beam monitor (rate, direction and their stability)

Off-axis detector (ND280)

v_μ CC event measurements is used in oscillation analysis (M.Ravonel's talk)

v_e CC event and NCπ⁰ event measurements are checked (background events for v_e appearance)

(G.Lopez's talk)

(Poster: Measurement of the electron neutrino component of the T2K beam at ND280)

Far Detector: SK-IV

 ϵ_{1}

Oscillation analysis method

between ND and far detector)

set from atm.-v & π^0 control sample

Flux & ν int. cross section fit w/ ND measurement

Fit (p_{μ}, θ_{μ}) distribution for CCQE and nonQE enhanced samples

 Flux energy dependent errors
 w/ full correlations among v types and between detectors (ND280, SK) are taken into account in prior of the fit

Fit results are extrapolated to the prediction at far detector

the predicted event rate is corrected based on the fit results

improved constraint on the systematic errors with ND280 measurement

(see also M.Ravonel's talk)

The predicted number of events and systematic uncertainties

The predicted # of events w/ 3.01 x 10²⁰ p.o.t.

Event category	$\sin^2 2\theta_{13} = 0.0$	$\sin^2 2\theta_{13} = 0.1$	
Total	$3.22 {\pm} 0.43$	$10.71 {\pm} 1.10$	mit
ν_e signal	0.18	7.79	ury t
ν_e background	1.67	1.56	oitra
$ u_{\mu} { m background}$ (mainly N	ICπº) 1.21	1.21	arl
$\overline{\nu}_{\mu} + \overline{\nu}_{e}$ background	0.16	0.16	

Systematic uncertainties

Error source	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$
Beam flux+ ν int.	87%	57%
in T2K fit	0.1 /0	0.1 /0
ν int. (from other exp.)	5.9~%	7.5~%
Final state interaction	3.1~%	2.4~%
Far detector	7.1~%	3.1~%
Total	13.4~%	10.3~%
(T2K 2011 results:	~23%	~18%)

big improvement from the T2K 2011 results

the predicted # of event distribution

Uncertainties are reduced using ND280 measurement

$\nu_{\rm e}$ candidate event selection

RUN 1+2+3 3.010×10 ²⁰ POT	Data	MC Expectation w/ sin ² 2θ ₁₃ =0.1				
		Signal vµ→ve	BG total	$CC (v_{\mu} + \bar{v}_{\mu})$	$CC(v_e + \bar{v}_e)$	NC
Fully contained FV at beam timing	174	12.35	165.47	117.33	7.67	40.48
Single ring	88	10.39	82.78	66.41	4.82	11.55
e-like	22	10.27	15.60	2.72	4.79	8.10
Evis>100MeV	21	10.04	13.53	1.76	4.75	7.01
No decay-e	16	8.63	10.09	0.33	3.76	6.00
2γ invariant mass cut	11	8.05	4.32	0.09	2.60	1.64
$E_v^{rec} < 1250 \text{ MeV}$	11	7.81	2.92	0.06	1.61	1.25
(MC sin ² 2 θ_{13} =0 case)		(0.18)	(3.04)	(0.06)	(1.73)	(1.25)
Efficiency [%]		60.7	1.0	0.0	20.0	0.9

Reconstructed v energy (MeV)

11 candidate events are observed

 $N_{exp}=3.22\pm0.43$ for sin²2 $\theta_{13}=0$

The probability (p-value) to observe 11 or more events with $\theta_{13}=0$ is 0.08% (3.2 σ)

Evidence of v_e **appearance**

Oscillation parameter fit

Performing an extended maximum likelihood fit to extract sin²20₁₃

$$\mathcal{L}(\underline{N_{obs.}}, \underline{x}; o, f) = \mathcal{L}_{norm}(N_{obs.}; \underline{o}, f) \times \mathcal{L}_{shape}(x; o, f) \times \mathcal{L}_{syst.}(\underline{f})$$
measurement
variables
oscillation
parameter
(prior: ND280 results)

v oscillation parameters fixed:

- $\Delta m_{21}^2 = 7.6 \times 10^{-5} \, eV^2$
- $\Delta m_{32}^2 = \pm 2.4 \times 10^{-3} \, eV^2$
- $\sin^2 2\theta_{12} = 0.8704$, $\sin^2 2\theta_{23} = 1.0$

rate + (p_e , θ_e) shape (2 dimensional)

Fit data with

differences in $p_e - \theta_e$ distribution allow to have a better discrimination of signal events from backgrounds

(method1)

We performed three independent fits

Method2: Rate + reconstructed E_v shape

Method3: Rate only (Feldman &Cousins)

assuming $\delta_{CP}=0$, normal hierarchy $|\Delta m^2_{32}|=2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23}=1$

Results

Results

Allowed region of sin²2 θ_{13} for each value of δ_{CP}

best fit w/ 68% CL error @δ_{CP}=0 normal hierarchy:

 $\sin^2 2\theta_{13} = 0.094^{+0.053}_{-0.040}$

inverted hierarchy:

 $\sin^2 2\theta_{13} = 0.116^{+0.063}_{-0.049}$

This result is consistent with rate+shape (rec. E_v) method and rate only method

c.f 2011 result for normal (inverted) hierarchy

 $\sin^2 2\theta_{13} = 0.11^{+0.10}_{-0.06} \ (0.14^{+0.12}_{-0.07})$

Summary & Outlook

- We report new results on v_e appearance analysis based on 3.01 x 10²⁰ p.o.t. (~4% exposure of T2K's goal)
 - 11 candidate events are observed
 p-value is 0.08% (equivalent to 3.2σ)
 sin² 2θ₁₃ = 0.094^{+0.053}_{-0.040}
 for Δm²₃₂ = 2.4 x 10⁻³ eV²(NH), δ_{CP}=0, sin²2θ₂₃=1
- We plan to take more data with new runs at higher beam power toward a more precise measurement of v_e appearance
 - ~8x10²⁰ p.o.t (2013) → ~1.2x10²¹ p.o.t (2014) → ~1.8x10²¹ p.o.t. (2015)
- \bullet Updated results on ν_{μ} disappearance coming soon
 - precise measurement of θ_{23}