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e Dark and visible matter charged under separate global U(1)s
(Bgand (B —L)y)

e In early universe, X = (B — L), + B, broken = X-charge
asymmetry generated

e B— L= (B-L),— By always conserved = Visible and dark
asymmetries related = Right DM abundance obtained for

In this talk: Focus on Affleck-Dine dynamics to

generate X-charge asymmetry
Based on work with Kallia Petraki and Ray Volkas
(arXiv:1201.2200)
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e SUSY theories often have ‘flat directions’ in scalar potential
(in MSSM e.g. certain combinations of u- and d-type squarks)

e Beyond SUSY and renormalizable limit, FDs ‘lifted’ by
e hidden-sector SUSY breaking:

Vo m o+ ..
e inflaton-induced SUSY breaking:
V D —cH?|®|?
e thermal corrections (turn out to be not important)

o higher-dimensional operators:

(Dd ¢d71 2

W, = 7de’3 — V> 7Mf’3

e Affleck-Dine mechanism: Dynamics of FD charged under global
U(1) generates asymmetry
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@ During inflation: AD field stuck in minimum determined by
inflaton-induced tachyonic mass and nonrenormalizable part
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o After inflation: Hubble rate decreases = hidden-sector soft mass
starts dominating = AD field begins oscillating around minimum



DYNAMICS OF THE AFFLECK-DINE FIELD
Let’s focus on gauge mediation. Potential for AD field then given by

2

5 5 ¢df1
VAD:—CH ’CD‘ I W
242 |2 Kd o7
+ my Mmln (1 + ,wm> + <AdI\ﬂf’_3 + h.c.

e At same time: A-term kicks AD field in radial direction

= asymmetry n, = iq, (d>*<1> — d>*d>> generated
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e X-charge asymmetry generated during inflaton oscillations.
charge-to-entropy ratio becomes constant at reheating:
. 2(d—3)
_ Qgysind |A|Tg ( M, ) d—2
TIX - 2 Mlg HOSC

e Four free parameters: Tg, M, M, and d. Requirement that
n, ~ 1079 leaves three. We choose M,,, M, and d.

e In gauge mediation, gravitino is the LSP

= Constraints on Tg (and thus M,, M,,, d)



CONSTRAINTS ON THE REHEATING TEMPERATURE

BBN and avoiding overclosure require that

100 GeV, for mg ;2 Z m
T Mgz < < A
Ta < 4-10 Gev<1GeV for 100keV S m3p Sm
100 GeV, for 100eV < my, <100 keV
no limit, for m3,, S 100eV,
where

b

,'7“-

1 GeV, for NLSP
10 GeV, for NLSP
100 GeV, for NLSP
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CONSTRAINTS FROM Q-BALLS

e Q-balls: non-topological solitons, stabilized by charge under U(1)
e AD condensate is unstable under spatial perturbations

= Fragments into Q-balls

e Average charge from numerical simulations:

w7 ( Maj \2 (500 GeV\* [b? for b <5 1
Q ~ 10 (1 G ) . 4(d—2)
eV m b= forb>1,

where b = (mM¢-2/Mg-2)""?
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CONSTRAINTS FROM Q-BALLS

e Q-balls can decay to particles with smaller mass-to-charge ratio.
SM temperature at time of Q-ball decay:

1 GeV me \3
To ~ 250 GeV( s ) (500 Gev> {

@ Require decay before BBN:

forb <1

_5(d=2)
21 forb 2 1

o o=

To > 10MeV

e Q-ball decays produce gravitinos = To avoid overclosure require:

Tq 2 mg2/20

10
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CONCLUSIONS

e Have analysed parameter space for successful pangenesis

e Important constraints on this scenario from
e Gravitino-bounds on reheating temperature

e Formation and decay of Q-balls
e Ample parameter space still allowed

@ = Pangenesis allows simultaneous generation of baryon
asymmetry and dark matter abundance via Affleck-Dine dynamics

e Analysis also applicable to other scenarios using the Affleck-Dine
mechanism



