Searches for CP Violation in the B^0_s System Using $B^0_s \rightarrow J/\psi + (\varphi/f_0/f_2)$ Decays

Dmitri Tsybychev
Stony Brook University
on behalf of D0 Collaboration

XXXVI International Conference on High Energy Physics
July 4–11 Melbourne, Australia
CP Violation in B^0_s

- B^0_s is one of the least explored systems
- Study of CP violation in B^0_s mixing may help explain the observed CP violation in Universe and lead to possible new physics
- Predicted CP rated is very small in SM - search for large deviations
- Mixing induced CP violation
 - Assume no CP in decays
 - 2 observables phases
 - ϕ_s - accessible through semileptonic decays
 - β_s- accessible through $B^0_s \rightarrow J/\psi + X$ decays
- Contribution of new particles in the box diagrams may enhance both

$2\beta_s = 2\beta_{SM}^s - \phi_{NP}^s$
$\phi_s = \phi_{SM}^s - \phi_{NP}^s$ with $\phi_{NP}^s >> \phi_{SM}^s$, $2\beta_{SM}^s$

$-2\beta_s \sim \phi_s \sim \phi_{NP}^s$
CP Violation in $B^0_s \to J/\psi + X$

- Study $B^0_s \to J/\psi + X$ decays
- X may be a (non)resonant final state and affect the CP measurements
 - For example S-wave contributions
- $X=\phi(K^+K^-)$ golden mode, used to measure CP-violating phase
- Study additional channels
- $X=f_0(980)(\pi^+\pi^-)$ also used to measure CP-violating phase
- Analysis of decay $B^0_s \to J/\psi K^+K^-$ for $1.35 < M(K^+K^-) < 2.0$
 - Measurement of branching ratio and study of spin have been performed for the resonant decay
B^{0}_{s} \to J/\psi + K^{+}K^{-} Selection

- Study $B^{0}_{s} \to J/\psi + K^{+}K^{-}$ decays
 - For each J/ψ candidate find K$^{+}$K$^{-}$ pair with common vertex
 - assign kaon mass
 - require m(K$^{+}$K$^{-}$) > 1.35 GeV
 - Reconstruct B^{0}_{s} candidate by forming a vertex for J/ψ and K$^{+}$K$^{-}$ pair
- Enhance signal by requiring $1.45 < m(K^{+}K^{-}) < 1.60$ GeV and $|\cos \psi| < 0.8$ (see later)
- Signal + Background model fit yields 578 ± 100 events with fit probability 0.338
- Background only fit probability 4.5×10^{-5}
J/ψK⁺K⁻ Sample Composition

- Decays attributed to f'₂(1525)
 - PDG mass 1525±5 MeV, width 73⁺6₋5 MeV
 - BR to KK: 89%, ππ: 1%
- Other possible contributions due f₂(1270)
 - BR to 2π/4π: 87.6%, KK: 4.6%
- f₀(1500)
 - BR to 2π/4π: 85%, KK: 8%
- No peak observed under J/ψπ⁺π⁻ hypothesis
- Additional contribution possible due to B⁰ → J/ψK⁺K⁻(→Kπ)
Decays $B^0 \rightarrow J/\psi K^*_2(1430)$ contribute to the signal due to π misidentification as K.

Contribution estimated in the fit using templates of $B^0 \rightarrow J/\psi K^* J$ in steps of $m(K^+K^-)$ of 50 MeV from MC.

Signal and background templates are fitted with double Gaussian.

Extract B^0_s yield as a function of $m(K^+K^-)$.
J/$\psi K^+ K^-$ Signal Yield

- Extract signal in 50 MeV bin of m(K$^+ K^-$)
- Relative normalization of two K*J(1430) states are allowed to vary
 - Normalization of Signal and all background are not constrained to be positive for unbiased rates close to zero
- Event yield versus m(K$^+ K^-$) distributions is fitted with signal (convoluted with Relativistic Breit-Wigner(J=2)) and a constant non-resonant term assumed to be S-wave
 - Signal: 669 ± 158
 - S-wave (in m(K$^+ K^-$) 1.4 to 1.7 GeV): 331 ± 73
- Measure BR relative to $B^0 \rightarrow J/\psi \phi$:

$$R_{f_2'}/\phi = \frac{B(B_s^0 \rightarrow J/\psi f_2'(1525); f_2'(1525) \rightarrow K^+ K^-)}{B(B_s^0 \rightarrow J/\psi \phi; \phi \rightarrow K^+ K^-)} = \frac{N_{B_s^0 \rightarrow J/\psi f_2'(1525)} \times \varepsilon_{\text{reco}}^{B_s^0 \rightarrow J/\psi f_2'(1525)}}{N_{B_s^0 \rightarrow J/\psi \phi} \times \varepsilon_{\text{reco}}^{B_s^0 \rightarrow J/\psi \phi}}$$

- **D0**: 0.22 ± 0.05(stat) ± 0.04(syst)
- **LHCb**: 0.264 ± 0.027(stat) ± 0.024(syst)
Spin Study

• Study spin configuration J=0⁺,1⁻,2⁺
• Decay amplitude is given by:

\[\frac{d\Gamma}{d\cos\theta d\phi d\cos\psi} \propto \sum_m A_m Y^m_l(\cos\theta_H, \phi_H) Y^{-m}_j(\cos\psi, 0) |D(\cos\theta_H, \phi_H, \psi)|^2 \]

• \(\theta, \phi \) and \(\psi \) are angles in helicity basis and sum extends over equal helicities \(m \) of the J/\(\psi \) and the spin J of \((K^+K^-) \) system
• D is acceptance for event reconstruction
• Decay amplitude is obtained in helicity angle \(\psi \), integrate out other two angles
• D0 data favor spin=2
• D0 data also accommodate a fit of coherent superposition of J=0 and J=2, with S-wave fraction 0.17±0.14
• Submitted to Phys. Rev. D
\[\Phi^{J/\psi \Phi_s} \text{ and } \Delta \Gamma_s \text{ in } B^0_s \to J/\psi \Phi \]

- Measure \(\Phi^{J/\psi \Phi_s}(\beta_s) \) and \(\Delta \Gamma_s \) by studying time evolution of flavor tagged \(B_s \to J/\psi(\mu^+\mu^-\Phi(K^+K^-)) \) decays
 - Pseudoscalar → Vector Vector
 - 3 possible angular momentum states
- The mass eigenstates are expected to be almost pure CP-eigenstates
 - \(S, D \) (CP even): linear combination of \(A_0, A_\parallel \)
 - \(P \) (CP odd): \(A_\perp \)

\[
\Gamma(t) \approx \left| A_{\text{even}}(\theta, \psi, \varphi, t) \right|^2 + \left| A_{\text{odd}}(\theta, \psi, \varphi, t) \right|^2 + A^* A(\text{CPC}) \quad \text{CP-conserving interference}
\]

\[
+ A^* A(\text{CPV})(e^{-\Gamma_{L,t}} - e^{-\Gamma_{H,t}}) \sin \phi_s^{J/\psi \Phi} \quad \text{CP-violating interference}
\]
$B^0_s \rightarrow J/\psi \phi$ Event Selection

- $B^0_s \rightarrow J/\psi \phi$ selection criteria are designed to minimize measurement uncertainties on $\phi_{J/\psi \phi}^s$ and $\Delta \Gamma_s$
- Based on Boosted Decision Tree multivariate technique
- Square cuts as a cross check and systematics

![Graphs showing mass and proper decay time distributions](image)
• Use event-by-event resolution
 • Approximated as sum of several Gaussians
 • Variation for systematics

• Use combined OST
 • Muon
 • Electron
 • Jet vertex charge
 • Dilution calibrated using B^0_d decays

• Correct for acceptance 2D acceptance in $\cos(\theta), \varphi$
• Data selection criteria applied to MC generated uniform in all angles
$\phi_{J/\psi\phi_s}$ and $\Delta \Gamma_s$ Fit Results

- Use Markov chain technique to draw contours in $\Delta \Gamma_s$ vs $\phi_{J/\psi\phi_s}$ parameter space
- Sample randomly likelihood using Metropolis-Hasting algorithm
- Use sampled likelihood to obtain contours and combine systematic uncertainties
- Combine BDT and cut based results

<table>
<thead>
<tr>
<th>P</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\tau}_s$</td>
<td>$1.443^{+0.038}_{-0.035}$ ps</td>
</tr>
<tr>
<td>$\Delta \Gamma_s$</td>
<td>$0.163^{+0.065}_{-0.064}$ ps$^{-1}$</td>
</tr>
<tr>
<td>$\phi_{J/\psi\phi_s}$</td>
<td>$-0.55^{+0.38}_{-0.36}$</td>
</tr>
<tr>
<td>$</td>
<td>A_0</td>
</tr>
<tr>
<td>$</td>
<td>A_\parallel</td>
</tr>
<tr>
<td>δ_\parallel</td>
<td>-3.15 ± 0.22</td>
</tr>
<tr>
<td>$(\delta_\perp - \delta_s)$</td>
<td>$-0.11^{+0.027}_{-0.025}$</td>
</tr>
<tr>
<td>$F_S(\text{eff})$</td>
<td>0.173 ± 0.036</td>
</tr>
</tbody>
</table>

Additional Channels for β_s Measurements

- $J/\psi f_0(980)$ final state corresponds to a CP-odd eigenstate of B^0_s
 - Could be used in studies of CP violation

$$R_{f_0/\phi} = \frac{N_{B^0_s \rightarrow J/\psi f_0(980)}}{N_{B^0_s \rightarrow J/\psi \phi}} \cdot \frac{\varepsilon_{\text{reco}}^{B^0_s \rightarrow J/\psi \phi}}{\varepsilon_{\text{reco}}^{B^0_s \rightarrow J/\psi f_0(980)}}$$

- Use BDT selection
- Normalize to $B^0_s \rightarrow J/\psi \phi$

$$R_{f_0/\phi} = 0.275 \pm 0.041 \text{ (stat)} \pm 0.061 \text{ (syst)}$$
Summary

- Mature experiment still producing exciting results
 - Sizeable B^0_s sample has been accumulated
 - Almost full 10 fb$^{-1}$ data sample analyzed
 - Adding new channels
 - Measured relative branching fraction of $B^0_s \rightarrow J/\psi f'_2(1525)$ to $B^0_s \rightarrow J/\psi \phi$ and spin of the K^+K^- system
 - Consistent with $J=2$ or superposition of $J=0,2$ states
 - Measured of B^0_s mixing parameters, polarization amplitudes and phases in the $B^0_s \rightarrow J/\psi \phi$ decay channel using 8 fb$^{-1}$ data sample
 - Measured relative branching fraction of $B^0_s \rightarrow J/\psi f_0(1525)$ to $B^0_s \rightarrow J/\psi \phi$
 - Plan to use for phase measurement with full dataset
BACKUP