Searches for CP Violation in the $\mathrm{B}^{0}{ }_{s}$ System Using $B^{0}{ }_{s} \rightarrow J / \psi+\left(\varphi / f_{0} / f_{2}\right)$ Decays

Dmitri Tsybychev Stony Brook University on behalf of D0 Collaboration XXXVI International Conference on High Energy Physics
July 4-11 Melbourne, Australia

CP Violation in B_{s}

- B_{s} is one of the least explored systems
- Study of CP violation in $\mathrm{B}^{0}{ }_{\mathrm{s}}$ mixing may help explain the observed CP violation in Universe and lead to possible new physics
- Predicted CP rated is very small in SM search for large deviations
- Mixing induced CP violation
- Assume no CP in decays
- 2 observables phases
- φ_{s} - accessible through semileptonic decays

Interference between mixing and decay to a CP eigenstate

$$
\begin{aligned}
& \Rightarrow \Gamma\left(B_{p h y s}^{0}(t) \rightarrow f_{C P}\right) \neq \Gamma\left(\bar{B}_{p h y s}^{0}(t) \rightarrow f_{C P}\right) \\
& \beta_{s}^{S M}=\arg \left[-V_{t s} V_{t b}^{*} / V_{c s} V_{c b}^{*}\right]=\lambda \eta^{2} \approx 1^{\circ}\left(\beta=22^{\circ}\right) \\
& \varphi_{s}=\arg \left(-\frac{M_{12}}{\Gamma_{12}}\right)=(4.2 \pm 1.3) \times 10^{-3}
\end{aligned}
$$

- $B_{s^{-}}$accessible through $B_{s}{ }_{s} \rightarrow J / \Psi+X$ decays

- Contribution of new particles in the box diagrams may enhance both
B_{s}^{0}

$$
\begin{aligned}
& 2 \beta_{s}=2 \beta^{S M}{ }_{s}-\phi_{s}{ }^{N P} \\
& \phi_{s}=\phi^{S M} M_{s}-\phi_{s}^{N P} \text { with } \phi_{s}^{N P \gg} \phi^{S M}{ }_{s} 2 \beta^{S M} M_{s} \\
& -2 \beta_{s} \sim \phi_{s} \sim \phi_{s}^{N P}
\end{aligned}
$$

CP Violation in $B_{s}{ }_{s} \rightarrow \mathrm{~J} / \Psi+X$

- Study $B^{0}{ }_{s} \rightarrow J / \Psi+X$ decays
- X may be a (non)resonant final state and affect the CP measurements
- For example S-wave contributions
- $\mathrm{X}=\varphi\left(\mathrm{K}^{+} \mathrm{K}^{-}\right)$golden mode, used to measure CP -violating phase
- Study additional channels
- $\quad X=f_{0}(980)\left(\pi^{+} \pi^{-}\right)$also used to measure CP-violating phase
- S. Stone and L. Zhang, Phys. Rev. D 79,
 074024 (2009)
- LHCb Phys. Lett. B698,115 (2011)
- Analysis of decay $\mathrm{B}_{\mathrm{S}_{\rightarrow} \mathrm{J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-} \text {for }}$
$1.35<\mathrm{M}\left(\mathrm{K}^{+} \mathrm{K}^{-}\right)<2.0$
- Measurement of branching ratio and study of spin have been performed for the resonant decay
- LHCb: Phys. Rev. Lett. 108, 151801 (2012)

$B^{0}{ }_{s} \rightarrow \mathrm{~J} / \Psi+\mathrm{K}^{+} \mathrm{K}^{-}$Selection

- Study $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi+\mathrm{K}^{+} \mathrm{K}^{-}$decays
- For each J/ Ψ candidate find $\mathrm{K}^{+} \mathrm{K}^{-}$pair with common vertex
- assign kaon mass
- require $m\left(K^{+} K^{-}\right)>1.35 \mathrm{GeV}$
- Reconstruct B^{0} candidate by forming a vertex for J / Ψ and $\mathrm{K}^{+} \mathrm{K}^{-}$pair
- Enhance signal by requiring
$1.45<\mathrm{m}(\mathrm{K}+\mathrm{K}-)<1.60 \mathrm{GeV}$ and $|\cos \Psi|<0.8$ (see later)
- Signal + Background model fit yields $578 \pm$ 100 events with fit probability 0.338
- Background only fit probability 4.5×10^{-5}

$\mathrm{J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$Sample Composition

- Decays attributed to $\mathrm{f}^{\prime}{ }_{2}(1525)$
- PDG mass $1525 \pm 5 \mathrm{MeV}$, width $73^{+6}{ }_{-5}$ MeV
- BR to KK: $89 \%, \pi \pi$: 1%
- Other possible contributions due $\mathrm{f}_{2}(1270)$
- BR to $2 \pi / 4 \pi$: $87.6 \%, \mathrm{KK}: 4.6 \%$
- $\mathrm{f}_{0}(1500)$
- BR to $2 \pi / 4 \pi$: 85%, KK: 8%
- No peak observed under $\mathrm{J} / \psi \pi^{+} \pi^{-}$hypothesis
- Additional contribution possible due to $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{J}}{ }^{*}(1430)(\rightarrow \mathrm{K} \pi)$

Peaking Backgrounds

- Decays $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{J}}^{*}(1430)(\rightarrow \mathrm{K} \pi)$ contribute to the signal due to π misidentification as K
- Contribution estimated in the fit using templates of $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{J}}^{*}$ in steps of $\mathrm{m}\left(\mathrm{K}^{+} \mathrm{K}^{-}\right)$of 50 MeV from MC
- Signal and background templates are fitted with double Gaussian
- Extract B^{0} yield as a function of $\mathrm{m}\left(\mathrm{K}^{+} \mathrm{K}^{-}\right)$

$\mathrm{J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$Signal Yield

- Extract signal in 50 MeV bin of $\mathrm{m}\left(\mathrm{K}^{+} \mathrm{K}^{-}\right)$
- Relative normalization of two $\mathrm{K}^{*} \mathrm{~J}(1430)$ states are allowed to vary
- Normalization of Signal and all background are not constrained to be positive for unbiased rates close to zero
- Event yield versus $m\left(\mathrm{~K}^{+} \mathrm{K}^{-}\right)$distributions is fitted with signal (convoluted with Relativistic Breit-Wigner(J=2)) and a constant non-resonant term assumed to be S-wave
- Signal: 669 ± 158
- S-wave (in $\mathrm{m}\left(\mathrm{K}^{+} \mathrm{K}^{-}\right) 1.4$ to 1.7 GeV): 331 ± 73
- Measure BR relative to $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \varphi$:

$$
\begin{aligned}
& R_{f_{2}^{\prime} / \phi}=\frac{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi f_{2}^{\prime}(1525) ; f_{2}^{\prime}(1525) \rightarrow K^{+} K^{-}\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi \phi ; \phi \rightarrow K^{+} K^{-}\right)} \\
& =\frac{N_{B_{s}^{0} \rightarrow J / \psi f_{2}^{\prime}(1525)} \times \varepsilon_{\mathrm{reco}}^{B_{s}^{0} \rightarrow J / \psi \phi}}{N_{B_{s}^{0} \rightarrow J / \psi \phi} \times \varepsilon_{\mathrm{reco}}^{B_{s}^{0} \rightarrow J / \psi f_{2}^{\prime}(1525)}}
\end{aligned}
$$

Spin Study

- Study spin configuration $\mathrm{J}=0^{+}, 1^{-1}, 2^{+}$
- Decay amplitude is given by:
$\frac{d \Gamma}{d \cos \theta d \phi d \cos \psi} \propto\left|\sum_{m} A_{m} Y_{1}^{m}\left(\cos \theta_{H}, \phi_{H}\right) Y_{j}^{-m}(\cos \psi, 0)\right|^{2} D\left(\cos \theta_{H}, \phi_{H}, \psi\right)$
$\bullet \theta, \varphi$ and ψ are angles in helicity basis and sum extends over equal helicities m of the J / Ψ and the spin J of ($\mathrm{K}^{+} \mathrm{K}^{-}$) system
- D is acceptance for event reconstruction
- Decay amplitude is obtained in helicity angle Ψ, integrate out other two angles
- D0 data favor $\mathrm{spin}=2$
- D0 data also accommodate a fit of

coherent superposition of J=0 and
$\mathrm{J}=2$, with S-wave fraction $0.17+-0.14$
- Submitted to Phys. Rev. D

$\varphi^{1 / \psi \varphi} \varphi_{s}$ and $\Delta \Gamma_{s}$ in $B^{0}{ }_{s} \rightarrow \mathrm{~J} / \psi \varphi$

 time evolution of flavor tagged $\quad B s \rightarrow j /$ $\psi\left(\mu^{+} \mu^{-} \varphi\left(\mathrm{K}^{+} \mathrm{K}^{-}\right)\right)$decays

- Pseudoscalar \rightarrow Vector Vector
- 3 possible angular momentum states
- The mass eigenstates are expected to be almost pure CP-eigenstates
- S,D (CP even): linear combination of A0, A||
- \mathbf{P} (CP odd): $\mathrm{A} \perp$
$\Gamma(t) \approx\left|A_{\text {even }}(\theta, \psi, \varphi, t)\right|^{2}+\left|A_{\text {odd }}(\theta, \psi, \varphi, t)\right|^{2}$
$+A^{*} A(C P C) \quad$ CP-conserving interference

$+A^{*} A(C P V)\left(e^{-\Gamma_{L} t}-e^{-\Gamma_{H} t}\right) \sin \phi_{s}^{J / \zeta \varphi}$
CP-violating interference

$B_{s}{ }_{s} \rightarrow J / \psi \varphi$ Event Selection

- $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \varphi$ selection criteria are designed to minimize measurement uncertainties on $\varphi^{1 / \psi \varphi_{s}}$ and $\Delta \Gamma_{s}$
- Based on Boosted Decision Tree multivariate technique
- Square cuts as a cross check and systematics

Resolution, Flavor Tagging, Acceptance

- Use event-by-event resolution
- Approximated as sum of several Gaussians
- Variation for systematics

- Use combined OST
- Muon
- Electron
- Jet vertex charge
- Dilution calibrated using $B^{0}{ }_{d}$ decays

- Correct for acceptance 2D acceptance in $\cos (\theta), \varphi$
- Data selection criteria applied to MC generated uniform in all angles

$\varphi^{I / \psi \varphi_{s}}$ and $\Delta \Gamma_{s}$ Fit Results

- Use Markov chain technique to draw contours in $\Delta \Gamma_{s}$ Vs $\varphi^{1 / \psi \varphi_{s}}$ parameter space - Sample randomly likelihood using Metropolis-Hasting algorithm
- Use sampled likelihood to obtain contours and combine systematic uncertainties
- Combine BDT and cut based results

$$
\text { Phys. Rev. D 85, } 032006 \text { (2012) }
$$

P	x	
$\bar{\tau}_{s}$	$1.443_{-0.035}^{+0.038} \mathrm{ps}$	
$\Delta \Gamma_{s}$	$0.163_{-0.064}^{+0.065} \mathrm{ps}^{-1}$	
$\phi_{s}^{J / \psi \phi}$	$-0.55_{-0.36}^{+0.38}$	
$\left\|A_{0}\right\|^{2}$	$0.558_{-0.019}^{+0.017}$	
$\left\|A_{\\| \mid}\right\|^{2}$	$0.231_{-0.030}^{+0.024}$	
$\delta_{\\|}$	-3.15 ± 0.22	
$\left(\delta_{\perp}-\delta_{s}\right)$	$-0.11_{-0.025}^{+0.027}$	
$F_{S}(e f f)$	0.173 ± 0.036	

Additional Channels for β_{s} Measurements

- $/ / \Psi f_{0}(980)$ final state corresponds to a $C P$ odd eigenstate of $B^{0}{ }_{s}$
- Could be used in studies of $C P$ violation

$$
R_{f_{0} / \phi}=\frac{N_{B_{s}^{0} \rightarrow J / \psi f_{0}(980)}}{N_{B_{s}^{0} \rightarrow J / \psi \phi}} \cdot \frac{\varepsilon_{\mathrm{raco}}^{B_{s}^{0} \rightarrow J / \psi \phi}}{\varepsilon_{\mathrm{reco}}^{B_{\mathrm{eco}}^{0} \rightarrow J / \psi f_{0}(980)}}
$$

- Use BDT selection
- Normalize to $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \varphi$

Phys. Rev. D 85, 011103 (2012)

$$
R_{f_{0} / \phi}=0.275 \pm 0.041(\text { stat }) \pm 0.061 \text { (syst) }
$$

Summary

- Mature experiment still producing exciting results
- Sizeable $\mathrm{B}^{0}{ }_{\mathrm{s}}$ sample has been accumulated
- Almost full 10 fb- 1 data sample analyzed
- Adding new channels
- Measured relative branching fraction of $B_{s}{ }_{s} \rightarrow J / \Psi f^{\prime}{ }_{2}(1525)$ to $B^{0} \rightarrow \mathrm{~J} / \Psi \varphi$ and spin of the $\mathrm{K}^{+} \mathrm{K}^{-}$system
- Consistent with J=2 or superposition of J=0,2 states
- Measured of B_{s} mixing parameters, polarization amplitudes and phases in the $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \varphi$ decay channel using $8 \mathrm{fb}^{-1}$ data sample
- Measured relative branching fraction of $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \mathrm{f}_{0}(1525)$ to $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \varphi$
- Plan to use for phase measurement with full dataset

BACKUP

