

Heavy flavor quark production in association (or not) with vector bosons in CMS

* * *

Simon de Visscher, Universität Zürich on behalf of the CMS collaboration

Simon de Visscher, ICHEP 2012, Melbourne.

vendredi 6 juillet 2012

Outline and references

CMS-EWK-11-013 arxiv:1204.1643 CMS-SMP-12-003 CMS-EWK-11-015 CMS-BPH-10-015

Motivations

- Simple Secondary Vertex (SSV) tagger.
 - Detect the presence of a displaced secondary vertex (SV) inside a jet
 - Use the SV flight distance significance as discriminator

$$D_{SSV} = sign(S)log(1+|s|), S = \frac{L_{3D}(PV - SV)}{\sigma_{3D}(PV - SV)}$$

Cut on discriminator defines the b-tagging efficiency CMS 2011 simulation preliminary, $\sqrt{s} = 7$ TeV ndsg jet efficiency 10-1 10-2 TCHE - TCHP **SSVHE** - SSVHP JP - JBP - CSV Two versions High efficiency (HE): >=2 tracks attached to the SV High purity (HP): >=3 tracks attached to the SV 10^{-3} 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 b jet efficiency Simon de Visscher, ICHEP 2012, Melbourne.

W+c relative cross-section measurement

W+c: probe the s-quark pdf

Luminosity= 36/pb (2010 data)

R[±]_c≠I because of d/dbar PDF difference, result compatible with s=sbar PDF see hep-ph/1203.6781

Overall good agreement between data and MC expectation. PDF dependence is visible Simon de Visscher, ICHEP 2012, Melbourne.

Z+b cross-section and angular correlation

- Z+>=I b-jets: L=2.2/fb
- Z+1,2 b-jets: L=2.13/fb
- Z+2 b-hadrons: L=4.6/fb

Z+b-jet(s): cross-section measurement

Z+b-jet(s): cross-section measurement

Z+bX:tension between MCFM and data Z+bbX: good agreement with Madgraph

Z+b-jet(s): tensions

Z+bb: angular correlation

- No use of jet because of radius limitation (~0.5-1.0).: use the Inclusive Vertex Finder (IVF)
 - Seed: tracks with large impact parameter,. Other tracks clustered around the seed
 - Vertex fitter: makes Secondary Vertices, merge if B→D-like decay (produces B-candidate)
 - Resolution $\Delta R(B_1, B_2) \sim 0.02!$
 - Draw back: no absolute IVF efficiency
 - \Rightarrow no data/MC scale factors
 - ⇒must normalize results arbitrarily

Z+bb angular correlation: △R(B,B)

BB \rightarrow µµ**X** cross-section measurement

[HEP 1103:136,2011 CMS $\sqrt{s} = 7 \text{ TeV}, L = 3.1 \text{ pb}^{1}$ ratio to PYTHIA Data ($p_{\tau}^{\text{Jet}} > 56 \text{ GeV}$) **PYTHIA** MadGraph Data ($p_{\tau}^{\text{Jet}} > 84 \text{ GeV}$) MC@NLO Previous CMS studies about b and bb Data (p_{τ}^{Jet} > 120 GeV) Cascade production (cross-section and angular Normalisation region p^B > 15 GeV, |η^B| < 2.0 correlation |η^{Jet}| < 3.0 MC@NLO fails at describing collinear configuration \rightarrow how about very soft P_T(b-hadron) configuration where gluon splitting ₫──┼──₫──┼──₫─ contribution is small? 2 0.5 1.5 2 2.5 3 3.5 Ω

 $\Delta \mathbf{R}$

- BB→µµX
 - allows to probe very soft region of the phase-space, where NLO predictions are less sensitive to gluon splitting contribution (and uncertainties)
 - high quality muons with >11 track hits, >1 pixel hits/track, χ²<2 and potentially large impact parameter with respect to primary vertex</p>

- The CMS experiment has already provided and continues to perform HF/V +HF analyses in the context of SM studies.
 - W+c study had allowed to estimate the W+c production rate and charge independance.
 - Inclusive Z+b(b) cross-section has been measured with 2.1/fb and is found to be larger than MCFM predictions
 - Zbb angular correlation show discrepancies with Madgraph prediction in 5F scheme and aMC@NLO (4F). No possibility to conclude yet about MPI impact
 - ► BB→ $\mu\mu$ study allows to probe very soft production of b-hadrons, the MC@NLO prediction is in agreement with data

Back-up slides

			\geq 1 jet	< 3 jets with	N_{tk}^{vtx}	$\Delta l <$
Sample	Muon	$M_T > 50 \mathrm{GeV}$	$p_{\rm T}^{jet} > 20 {\rm GeV},$	$p_{\rm T}^{jet} > 40 {\rm GeV}$	≥ 2	0.15 cm
		& DY veto	$ \eta^{jet} < 2.1$	$ \eta^{jet} < 2.1$		
Events with μ^+	112292	80259	18237	18010	768	636
Events with μ^-	83451	55749	13948	13725	653	563
Events with μ^{\pm}	195743	136008	32185	31735	1421	1199

Source	$N_{\rm bg}/(N_{\rm sg}+N_{\rm bg})$	$N_{ m bg}$ in 36 pb ⁻¹
W + udsg	$24.5\pm0.6\%$	220 ± 4
W+b	$4.1\pm0.2\%$	37 ± 2
$t\bar{t}$	$14.8\pm0.2\%$	133 ± 1
single-t	$5.2\pm0.1\%$	47 ± 1
$W \to \tau \nu$	$1.3\pm0.1\%$	12 ± 1
$Z \rightarrow \mu^+ \mu^-$	$1.9\pm0.1\%$	17 ± 1
$Z \rightarrow \tau^+ \tau^-$	$0.1\pm0.1\%$	1 ± 1
QCD	$1.1\pm0.1\%$	10 ± 1
Total Bckg.	$53.0\pm0.7\%$	476 ± 5
	$N_{\rm sg}/(N_{\rm sg}+N_{\rm bg})$	$N_{\rm sg}$ in 36 pb ⁻¹
W + c	$47.0\pm0.8\%$	423 ± 6

Table 3: Relative systematic uncertainties (%) in the measurement of *l*

Source	Relative uncertainty (%)	
Charge asymmetry in efficiency	1.0	
Muon resolution	<0.1	
Pile-up effects	1.8	
Jet energy scale/resolution	1.1	
Jet multiplicity	0.7	
Vertex reconstruction	0.3	
Top templates	1.7	
Light-quark contribution	1.1	
W+b background	0.2	
Other Monte Carlo backgrounds	1.4	
PDF uncertainties	2.2	
Charm fragmentation function	<0.1	
Charm fragmentation BRs	0.1	
TOTAL	4.1	

Table 4: Relative systematic uncertainties (%) in the measurement of

Source	Relative uncertainty (%)	
Charge asymmetry in efficiency	-	
Muon resolution	0.7	
Pile-up effects	2.5	
Jet energy scale/resolution	2.3	
Jet multiplicity	2.5	
Vertex reconstruction	14.1	
Top templates	6.2	
Light-quark contribution	3.3	
W+b background	2.4	
Other Monte Carlo backgrounds	0.2	
PDF uncertainties	0.2	
Charm fragmentation function	0.2	
Charm fragmentation BRs	0.2	
TOTAL	16.5	

Z+b-jet(s): cross-section

Z+I,2 b-jet(s) efficiencies

Table 4: Migration factors for the b-tagging and lepton selection efficiencies, for the muon channel. Notations are the same as explained in the caption of Table 3, with muons instead of electrons.

Migrations for b-tagging (%)	$\mu\mu_{sel}$ + 1 b reco	$\mu\mu_{sel}$ + (2+) b reco
$\mu\mu_{sel}$ + (2+) b tag	-	26.2 ± 2.2
$\mu\mu_{sel}$ + 1 b tag	49.7 ± 2.3	50.4 ± 2.0
Migrations for lepton selection (%)	$\mu\mu_{sel}$ + 1 b reco	$\mu\mu_{sel}$ + (2+) b reco
$\mu\mu$ + 1 b reco	84.7 ± 1.6	-
$\mu\mu$ + (2+) b reco	-	84.0 ± 1.7

Z+>=1b

Correlated sources	Fractional uncertainty (%)		
b-tagging efficiency	1	0	
b-jet purity	5.6 (ee+b)	4.6 (μμ+b)	
tt contribution	2.9		
Jet energy scale	2.5		
Luminosity	2.	2	
Jet energy resolution	0.	.5	
Pile-up	1.5 (ee+b) $0.5 (\mu\mu+b)$		
Mistagging rate	0.04		
Theory (via \mathcal{A}_ℓ)	$\substack{+4.2\\-6.5}$		
Theory (via C_{hadron})	+0.7 -6.9		
Uncorrelated sources	ee+b	μμ+b	
Trigger and dilepton selection	4	2	
tt contribution	1.9	2.2	
Experimental systematic	13.0	12.3	
Theoretical systematic	$+4.2 \\ -9.5$	$+4.2 \\ -9.5$	
Statistical	2.2	1.7	

Z+1,2b

	ee(%)		μμ(%)	
Correlated sources	Z+1b	Z+2b	Z+1b	Z+2b
b-jet purity	3.5	10.3	2.5	11.0
tt contribution	0.9	8.9	0.5	9.4
b-tagging efficiency	4.0	7.4	3.9	7.5
Jet energy scale	3.9	6.9	3.8	6.4
Luminosity	4.5	4.5	4.5	4.5
$E_{\rm T}^{\rm miss}$ selection	0.3	2.4	0.3	2.4
Pileup	1.7	1.8	0.3	0.3
ZZ contribution	0.1	0.5	0.1	0.7
Jet energy resolution	0.1	0.2	0.1	0.1
Mistagging rate	0.02	0.08	0.02	0.07
Theory (via \mathcal{A}_l)	1.8	5.9	3.0	6.4
Uncorrelated sources	Z+1b	Z+2b	Z+1b	Z+2b
MC sample stat.	1.2	5.1	0.9	4.2
Dilepton selection	4.0	4.0	1.9	1.9
Statistical	2.4	10.0	1.8	8.2
Experimental systematic	9.1	18.9	7.7	18.8
Theoretical systematic	1.8	5.9	3.0	6.4

Z+bb: angular correlation

ZSV: yields and Z distributions

	$60 < M_{\mu\mu} < 120 GeV$	$M_{\mu\mu} \ge 120 \text{ GeV}$	$60 < M_{ee} < 120 GeV$	$M_{ee} \ge 120 \text{ GeV}$
data	454	154	254	120
DY+b	290.25 ± 11.73	3.90 ± 1.47	145.91 ± 8.36	0.69 ± 0.40
tī	249.17 ± 7.34	167.21 ± 5.91	138.06 ± 5.53	115.21 ± 4.98
Other DY	3.43 ± 1.21	0.83 ± 0.58	3.87 ± 1.29	0.00 ± 0.00
WW	0.00 ± 0.00	0.18 ± 0.09	0.00 ± 0.00	0.12 ± 0.07
WZ	0.23 ± 0.07	0.00 ± 0.00	0.09 ± 0.04	0.00 ± 0.00
ZZ	5.67 ± 0.19	0.13 ± 0.03	2.78 ± 0.12	0.09 ± 0.02
sum MC	548.75 ± 13.89	172.24 ± 6.12	290.71 ± 10.1	116.11 ± 4.99
data/MC	0.83 ± 0.04	0.89 ± 0.08	0.87 ± 0.06	1.03 ± 0.10

ZSV: sanity checks

vendredi 6 juillet 2012

ZSV: systematics

Source	Uncertainty
Softer B-hadron p_T and IVF phase-space correction	±9%
IVF purity	$\pm 4\%$
Fit uncertainty	$\pm (1\% - 2\%)$
Leptons kinematics	$\pm 0.5\%$
MC statistics	$\pm (6\% - 10\%)$