

W and Z Studies at CMS

By Anna Kropivnitskaya
University of Florida
On Behalf of CMS

- ◆ Inclusive W and Z boson cross section at \sqrt{s} = 8 TeV (NEW)
- Measurement of the charge asymmetry in inclusive W at $\sqrt{s} = 7$ TeV:
 - using electron decay
 - using muon decay
- Drell-Yan at √s = 7 TeV
 - Differential and double-differential cross section
 - Forward-backward asymmetry
 - Measurement of the weak mixing angle

W/Z studies

The main LHC goal: explore physics at the TeV energy scale via pp collision

Benefits of W and Z studies:

- ★ Test for the Standard Model (sensitive to new physics)
- + Precision measurements at TeV scale
- ◆ Unique test and contribution to the proton PDF
- ♣ Better understanding of background for Higgs and new physics search analyses

The Compact Muon Solenoid (CMS)

L1 level up to 100 kHz → High Level Trigger to record ~ 300 Hz

W and Z boson cross section at $\sqrt{s} = 8$ TeV

CMS-PAS-12-011

Precise measurement is any important test for Standard Model and contribution PDFs:

- We repeat analysis in similar way like it was done for 2010 data with low pile-up with $\mathcal{L} = 36 \text{ pb}^{-1}$ (J. High Energy Phys. 10 (2011) 132)
- ◆ CMS requested special LHC conditions during luminosity ramp up period to achieve low pile-up events (~5) for good MET resolution at W:
 - → LHC separate beams in transverse plane to reduce effective overlap
 - → separation was periodically adjust to keep instantaneous \$\mu_{inst}\$ ~ 3E32 - 6E32 cm⁻²s⁻¹
 - → Integrated \mathcal{L} = 18.8 pb⁻¹
 - → Special HLT menu with low thresholds:22 GeV for e and 15 GeV for µ
 - → minimal ID/Iso requirement to suppress background

W and Z boson cross section at $\sqrt{s} = 8 \text{ TeV}$

CMS-PAS-12-011

Event Selection:

e-channel:

 $E_T > 25$ GeV and $|\eta| < 2.5$, exclude 1.4442 < $|\eta| < 1.566$ (barrel/forward transition)

W \rightarrow ev: Reject events with 2nd e with E_T > 20 GeV

μ-channel:

 $p_T > 25 \text{ GeV and } |\eta| < 2.1$

W \rightarrow µv: Reject events with 2nd µ with p_T > 10 GeV

Z→II: 60 GeV < M_{II} < 120 GeV

The dominant source of systematic uncertainty:

- Experimental:
 - Luminosity (4.4%) for absolute cross sections
 - Lepton efficiency (1-3%)
 - Theoretical uncertainty in acceptance (2-3%)
- Theoretical:
 - PDFs
 - Higher order QCD corrections
 - Higher order electroweak corrections

W and Z boson cross section at $\sqrt{s} = 8 \text{ TeV}$

CMS-PAS-12-011

Z Signal Extraction: cut and count

W and Z boson cross section at $\sqrt{s} = 8$ TeV

- W: MC with recoil corrected to data
- QCD model: analytic function
- Other background: from MC with xsec fixed to W from theory

CMS-PAS-12-011

W and Z boson cross section at $\sqrt{s} = 8 \text{ TeV}$

W, Z cross-section

CMS-PAS-12-011

 Good agreement with theoretical NNLO prediction

W and Z boson cross section at $\sqrt{s} = 8$ TeV

CMS-PAS-12-011

Z vs W cross section

$\sqrt{s} = 8 \text{ TeV}$ **CMS Preliminary** $\sigma_Z^{tot} \times BR(Z \rightarrow II)[nb]$ σ^{tot}xBR(W⁺→lv)[nb] $L dt = 18.7 pb^{-1}$ 1.2 1.15 1.1 1.05 Data(stat ⊕ sys) **FEWZ NNLO Prediction** MSTW 2008 NLO Data(stat ⊕ sys ⊕ lumi) NNPDF2.0 0.95 68% CL unc. CTEQ(CT10) 0.9 10.5 11.5 12 12.5 13 9.5 10 11 $\sigma_{W}^{tot}xBR(W\rightarrow lv)[nb]$

W⁺ vs W⁻ cross section

Good agreement with theoretical NNLO prediction

Charge asymmetry in inclusive W→μυ (7 TeV)

CMS-PAS-EWK-11-005

Proton: 2u and 1d → W⁺ (uđ) is easier to produce then W⁻ (dū) Asymmetry A(η) is observed:

$$A(\eta) = \frac{d\sigma/d\eta(W^{+}) - d\sigma/d\eta(W^{-})}{d\sigma/d\eta(W^{+}) + d\sigma/d\eta(W^{-})}$$

Precise measurement will provide significant contribution to PDFs

Muon charge asymmetry for $p_T > 25 \text{ GeV}$

- ✓ Data has flatter variation of the asymmetry in η then predicted by MSTW2008NLO, CT10W and NNPDF2.1 (NLO)
- ✓ will provide significant contribution to PDFs

Charge asymmetry in inclusive W→eu (7 TeV)

- ✓ Good agreement with NLO prediction except MSTW
- ✓ Background contribution increase with η
- ✓ will provide significant contribution to PDFs

Drell-Yan: dσ/dM (7 TeV)

CMS-PAS-EWK-11-007

- ✓ dσ/dM is calculated in the full phase space
- ✓ normalized to the cross section in the Z peak region (60 < M <120 GeV) to reduce systematic uncertainties</p>
- ✓ good agreement with NNLO theoretical prediction, computed with FEWZ using MSTW2008 PDFs
- ✓ NNLO correction is required to describe low dilepton invariant masses

Drell-Yan: dσ/dMdY (7 TeV)

CMS-PAS-EWK-11-007

- ✓ dσ/dMdY is measured for muons only within detector acceptance and normalized to the Z peak region with |Y| < 2.4 to reduce systematic
- √ 6 bins at M from 20 to 1500 GeV
- ✓ very important measurement for test and contribution to PDFs

Drell-Yan: forward-backward asymmetry (7 TeV)

CMS-PAS-EWK-11-004

Interference y* and Z boson

→ forward-backward asymmetry A_{FB}

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

✓ unfolded, combined (ee and µµ) and Born level A_{FB} is measured with acceptance cuts:

 $p_T > 20 \text{ GeV}, |\eta| < 2.4, M(II) > 40 \text{ GeV}$

✓ test of Standard Model:

A_{FB} is in agreement with Standard Model prediction within uncertainties

Drell-Yan: weak mixing angle (7 TeV)

Phys. Rev. D 84 (2011) 112002

- \checkmark sin²θ_w is measured at √s = 7 TeV with 1% precision like at all hadronic experiments: CDF and D0 (Tevatron), H1 (HERA)
- ✓ dominant processes: uū and dđ → γ*/Z → μμ
- ✓ use unbinned extended maximum-likelihood, simultaneous fit data of di-muon rapidity, di-muon invariant mass and di-muon decay angle

$\sin^2\theta_w = 0.2287 \pm 0.0020(stat.) \pm 0.0025(syst.)$ as expected in Standard Model

Conclusion

- First results at \sqrt{s} = 8 TeV are presented: W and Z inclusive cross section
- W, Z and Drell-Yan are studied very detailed at $\sqrt{s} = 7$ TeV:
 - ✓ Precise test of Standard Model
 - ✓ Sensitive to New Physics
 - ✓ Significant contribution to PDFs
- ◆ Looking forward for more 8 TeV results ... and 14 TeV

The most recent public results always could be found at https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP

BACK UP

LHC Luminosity

- √ Good start up from 2010 to 2012
- ✓ In 2012 before ICHEP2012 CMS recored more data then in 2010&2011
- → Much more data coming soon
- → Very exiting time

20/04

Date

20/05

W and Z boson cross section at $\sqrt{s} = 8 \text{ TeV}$

CMS-PAS-12-011

W/Z ratio

Drell-Yan: dσ/dM

CMS-PAS-EWK-11-007

Drell-Yan: dσ/dMdY

CMS-PAS-EWK-11-007

- ✓ at low M dominates QCD BG
- ✓ at high M dominates ttbar BG